Advertisement

JOM

, Volume 71, Issue 11, pp 3996–4004 | Cite as

Inverse Simulation of Fracture Parameters for Cement-Bonded Corundum Refractories

  • Liping Pan
  • Zhu HeEmail author
  • Yawei LiEmail author
  • Baokuan Li
  • Shengli Jin
Modeling and Simulation of Composite Materials

Abstract

In order to obtain the real solution of the fracture parameters for the wedge-splitting test, numerical simulation and inverse algorithm have been designed to estimate the maximum tensile stress and fracture energy of cement-bonded corundum refractory. The experimental and simulated curves have been systematically compared to produce the bilinear model of cohesive zone material with the inverse algorithm of nonlinear least-squares solution being the most suitable for the simulation of the wedge-splitting test. Furthermore, the inverse simulation procedure has been applied to specimens of various heating temperatures and cement contents. Consequently, the fracture energy and the maximum tensile stress initially decrease and then increase with the temperature. Furthermore, the fracture energy has the tendency of increasing with the cement content, and the maximum tensile stress has the highest peak at the content of 10 wt.%. Additionally, the cement-bonded corundum refractory presents higher brittleness after high-temperature heating (1400°C) or with the cement content of 10 wt.% at 110°C.

Notes

Acknowledgement

The authors are grateful to the National Natural Science Foundation of China (51974211, 51872211 and 51702240) for financial support.

Supplementary material

11837_2019_3750_MOESM1_ESM.pdf (205 kb)
Supplementary material 1 (PDF 205 kb)

References

  1. 1.
    V.V. Primachenko, V.V. Martynenko, V.A. Ustichenko, L.A. Babkina, R.M. Fedoruk, I.V. Khonchik, L.K. Savina, L.N. Zolotukhina and A.B. Kovalev, Proc. UNITECR 2005, 27 (2005)Google Scholar
  2. 2.
    W.E. Lee, W. Vieira, S. Zhang, K.G. Ahari, H. Sarpoolaky, and C. Parr, Int. Mater. Rev. 46, 145 (2001).CrossRefGoogle Scholar
  3. 3.
    C. Parr, L. Bin, B. Valdelievre, C. Wohrmeyer, and B. Touzo, Proc. ALAFAR Congress 2004, 10 (2004).Google Scholar
  4. 4.
    Y.E. Hafiane, A. Smith, Y. Abouliatim, T. Chartier, L. Nibou, and J.-P. Bonnet, J. Eur. Ceram. Soc. 34, 1017 (2014).CrossRefGoogle Scholar
  5. 5.
    W.D. Kingery, J. Am. Ceram. Soc. 38, 3 (1955).CrossRefGoogle Scholar
  6. 6.
    E.Y. Sako, M.A.L. Braulio, D.H. Milanez, P.O. Brant, and V.C. Pandolfelli, J. Mater. Process. Tech. 209, 5552 (2009).CrossRefGoogle Scholar
  7. 7.
    N.M. Khalil, Br. Ceram. Trans. 103, 37 (2004).CrossRefGoogle Scholar
  8. 8.
    J.F. Bartolome, J. Requena, J.S. Moya, M. Li, and F. Guiu, Acta Mater. 44, 1361 (1996).CrossRefGoogle Scholar
  9. 9.
    D.P.H. Hasselman, J. Am. Ceram. Soc. 52, 600 (1969).CrossRefGoogle Scholar
  10. 10.
    D.P.H. Hasselman, J. Am. Ceram. Soc. 46, 535 (1963).CrossRefGoogle Scholar
  11. 11.
    E.K. Tschegg, Materialprufung. 333, 38 (1991).Google Scholar
  12. 12.
    A. Hillerborg, Mater. Struct. 18, 291 (1985).CrossRefGoogle Scholar
  13. 13.
    L.S. Castillo, R. Monte, and A.D.D. Figueiredo, Constr. Build. Mater. 192, 731 (2018).CrossRefGoogle Scholar
  14. 14.
    J.F. Guan, X.Z. Hu, C.P. Xie, Q.B. Li, and Z.M. Wu, Theor. Appl. Fract. Mech. 93, 263 (2018).CrossRefGoogle Scholar
  15. 15.
    R.G. Bourdel, A. Alzina, M. Huger, T. Chotard, R. Emler, D. Gruber, and H. Harmuth, J. Eur. Ceram. Soc. 33, 913 (2013).CrossRefGoogle Scholar
  16. 16.
    T.B. Zhu, Y.W. Li, S.B. Sang, and Z.P. Xie, J. Eur. Ceram. 37, 1789 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Ribeiro and J.A. Rodrigues, Ceram. Int. 36, 263 (2010).CrossRefGoogle Scholar
  18. 18.
    D.Y. Miyajia, T. Tonnesenb, and J.A. Rodriguesa, Ceram. Int. 40, 15227 (2014).CrossRefGoogle Scholar
  19. 19.
    F.H. Wittmann, P.E. Roelfstra, and H. Sadouki, Mater. Sci. Eng. 68, 239 (1985).CrossRefGoogle Scholar
  20. 20.
    J. Skocek and H. Stang, Eng. Fract. Mech. 75, 3173 (2008).CrossRefGoogle Scholar
  21. 21.
    Y. Kitsutaka, J. Eng. Mech. 123, 44 (1997).CrossRefGoogle Scholar
  22. 22.
    J.E. Dennis, D.M. Gay, R.E. Walsh, and A.C.M. Trans, Math. Soft. 7, 348 (1981).CrossRefGoogle Scholar
  23. 23.
    Y.S. Jenq and S.P. Shahe, Eng. Fract. Mech. 21, 1055 (1985).CrossRefGoogle Scholar
  24. 24.
    J. Yeoushang and P.S. Surendra, J. Eng. Mech. 1111, 227 (1985).Google Scholar
  25. 25.
    X.P. Xu and A. Needleman, J. Mech. Phys. Solid. 42, 1397 (1994).CrossRefGoogle Scholar
  26. 26.
    G. Alfano and M.A. Crisfield, Int. J. Numer. Meth. Eng. 50, 1701 (2001).CrossRefGoogle Scholar
  27. 27.
    D.Y. Miyaji, C.Z. Otofuji, A.H.A. Pereira, and J.A. Rodrigues, Mater. Res. 18, 250 (2015).CrossRefGoogle Scholar
  28. 28.
    S.H. Kwon, Z.F. Zhao, and S.P. Shah, Cement Concr Res. 38, 1061 (2008).CrossRefGoogle Scholar
  29. 29.
    H. Harmuth and R.C. Bradt, Interceram Refra. Manua. 2010, 6 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.National-provincial Joint Engineering Research Center of High Temperature Materials and Lining TechnologyWuhan University of Science and TechnologyWuhanChina
  3. 3.Chair of CeramicsMontanuniversitaetLeobenAustria

Personalised recommendations