pp 1–10 | Cite as

Effect of Titania Doping on Structural and Mechanical Properties of NiO/YSZ Anode Materials Sintered by Using Microwave Energy

  • Sonia Mago
  • Kanchan L. SinghEmail author
  • Anirudh P. Singh
  • Chetan Sharma
  • Payal Sharma
Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements


The current article presents first-hand work on the synthesis of nickel oxide–titania-doped yttria-stabilized zirconia (NiO-YZT) composites of composition 0.40NiO-0.60{[(ZrO2)0.92(Y2O3)0.08]1−x(TiO2)x} with x = 0.00, 0.03, 0.06, 0.09, 0.12 and 0.15 using microwave processing. The composites are prepared by mixed oxide method by taking yttria (Y2O3), titania (TiO2) and monoclinic zirconia (ZrO2) in their stoichiometric ratio and sintered by using conventional and microwave processing techniques. The investigation of prepared composites has been carried out by x-ray diffractometer, scanning electron microscope and Vickers hardness technique to probe the crystal structure, microstructure and mechanical properties. Also, the results obtained are compared for both the conventionally and microwave-sintering routes. It was inferred that the microwave-sintered NiO-YZT showed better results than the conventional samples in terms of greater density, uniform microstructure and better microhardness.



We thank Inder Kumar Gujral Punjab Technical University, Kapurthala, for facilitating the experimental work. We also acknowledge NIIT, Jalandhar, and Thapar University, Patiala, for providing assistance in the characterization of processed samples.

Supplementary material

11837_2019_3742_MOESM1_ESM.pdf (461 kb)
Supplementary material 1 (PDF 460 kb)


  1. 1.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater Sci. 72, 141 (2015).CrossRefGoogle Scholar
  2. 2.
    X. Mantzouris, N. Zouvelou, D. Skarmoutsos, P. Nikolopoulos, and F. Tietz, J. Mater. Sci. 40, 2471 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Mori, Y. Hiei, H. Itoh, G.A. Tompsett, and N.M. Sammes, Solid State Ionics 160, 1 (2003).CrossRefGoogle Scholar
  4. 4.
    P. Holtappels, M. Verbraeken, U. Vogt, D.H.A. Blank, and B.A. Boukamp, Solid State Ionics 177, 2029 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Tsoga, P. Nikolopoulos, and A. Naoumidis, Ionics (Kiel) 2, 427 (1996).CrossRefGoogle Scholar
  6. 6.
    F. Yakuphanoglu, M. Okutan, and K. Korkmaz, J. Alloys Compd. 450, 39 (2008).CrossRefGoogle Scholar
  7. 7.
    M.T. Colomer, L.S.M. Traqueia, J.R. Jurado, and F.M.B. Marques, Mater. Res. Bull. 30, 515 (1995).CrossRefGoogle Scholar
  8. 8.
    D. Skarmoutsos, Solid State Ionics 135, 439 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Mago, C. Sharma, P. Sharma, K. Lata Singh, and A. Pratap Singh, Orient. J. Chem. 34, 2539 (2018).CrossRefGoogle Scholar
  10. 10.
    C. Sharma, K.L. Singh, A.P. Singh, V. Naithani, P. Sharma, S. Mago, and R.K. Chadha, Mater. Chem. Phys. 218, 204 (2018).CrossRefGoogle Scholar
  11. 11.
    M.T. Colomer, S. Díaz-Moreno, R. Boada, M. Maczka, and J. Chaboy, Phys. Rev. B - Condens. Matter Mater. Phys. 89, 094101 (2014).CrossRefGoogle Scholar
  12. 12.
    D. Skarmoutsos, F. Tietz, and P. Nikolopoulos, Fuel cells 1, 243 (2001).CrossRefGoogle Scholar
  13. 13.
    M. Verbraeken, M.S. Thesis, The university of Twente (2005).Google Scholar
  14. 14.
    D. Skarmoutsos, P. Nikolopoulos, F. Tietz, and I.C. Vinke, Solid State Ionics 170, 153 (2004).CrossRefGoogle Scholar
  15. 15.
    J. Rossmeisl and W.G. Bessler, Solid State Ionics 178, 1694 (2008).CrossRefGoogle Scholar
  16. 16.
    H.A. Taroco, J.A.F. Santos, and R.Z.T. Matencio, Advances in Ceramics-Synthesis and Characterization, ed. by C. Sikalidis. Processing and Specific Applications (InTech Publisher, Croatia, 2011), p. 423.Google Scholar
  17. 17.
    P. Tiwari and S. Basu, J. Solid State Electrochem. 18, 805 (2014).CrossRefGoogle Scholar
  18. 18.
    D. Agrawal, Mater. Res. Innov. 14, 3 (2010).CrossRefGoogle Scholar
  19. 19.
    A.P. Singh, N. Kaur, A. Kumar, and K.L. Singh, J. Am. Ceram. Soc. 90, 789 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Mago, K.L. Singh, and A.P. Singh, STM J. JoNSNEA 3, 7 (2013).Google Scholar
  21. 21.
    S. Mago, C. Sharma, P. Sharma, K.L. Singh, and A.P. Singh, RRJoPHY 7, 51 (2018).Google Scholar
  22. 22.
    K.L. Singh, A. Kumar, A.P. Singh, and S.S. Sekhon, Bull. Mater. Sci. 31, 655 (2008).CrossRefGoogle Scholar
  23. 23.
    S. Mago, C. Sharma, R. Mehra, O.P. Pandey, K.L. Singh, and A.P. Singh, Mater. Chem. Phys. 216, 372 (2018).CrossRefGoogle Scholar
  24. 24.
    A. Azim Jais, S.A. Muhammed Ali, M. Anwar, M. Rao Somalu, A. Muchtar, W.N.R. WanIsahak, C. Yong Tan, R. Singh, and N.P. Brandon, Ceram. Int. 43, 8119 (2017).CrossRefGoogle Scholar
  25. 25.
    S. Chen, P. Shen, and D. Gan, Mater. Sci. Eng., A 158, 251 (1992).CrossRefGoogle Scholar
  26. 26.
    S. Ramesh, K.C.J. Raju, and C.V. Reddy, Trans. Indian Ceram. Soc. 70, 143 (2011).CrossRefGoogle Scholar
  27. 27.
    C. Verdon, Ph. D Thesis, The University of British Columbia (2015).Google Scholar
  28. 28.
    M.A. Janney and H.D. Kimrey, Materials Research Society Symposium Proceedings, p. 189 (1991).Google Scholar
  29. 29.
    M.T. Colomer and J.R. Jurado, J. Solid State Chem. 165, 79 (2002).CrossRefGoogle Scholar
  30. 30.
    D. Agrawal, J. Cheng, H. Peng, L. Hurt, and K. Cherian, Am. Ceram. Soc. Bull. 87, 39 (2008).Google Scholar
  31. 31.
    D. Agrawal, Trans. Indian Ceram. Soc. 65, 129 (2006).CrossRefGoogle Scholar
  32. 32.
    C.Y. Fang, C. Wang, A.V. Polotai, D.K. Agrawal, and M.T. Lanagan, Mater. Lett. 62, 2551 (2008).CrossRefGoogle Scholar
  33. 33.
    H.N. Kuo, J.H. Chou, and T.K. Liu, Appl. Bionics Biomech. 2016, 1 (2016).CrossRefGoogle Scholar
  34. 34.
    G.D. Quinn, Ceramic Engineering and Science Proceedings, Cocoa Beach, 45 (2006).Google Scholar
  35. 35.
    Y.M. Park and G.M. Choi, Solid State Ionics 120, 265 (1999).CrossRefGoogle Scholar
  36. 36.
    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 4619 (1996).CrossRefGoogle Scholar
  37. 37.
    M. Kibsey, J. Romualdez, X. Huang, R. Kearsey, and Q. Yang, J. Eng. Gas Turbines Power 133, 122101 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Punjab Technical UniversityJalandharIndia
  2. 2.DAV Institute of Engineering and TechnologyJalandharIndia

Personalised recommendations