Advertisement

JOM

pp 1–12 | Cite as

Extraction of Copper and Nickel from Low-Grade Nickel Sulfide Ore by Low-Temperature Roasting, Selective Decomposition and Water-Leaching Process

  • Wenning MuEmail author
  • Zhipeng Huang
  • Haixia Xin
  • Shaohua Luo
  • Yuchun Zhai
  • Qian Xu
Rare Metal Recovery from Secondary Resources
  • 17 Downloads

Abstract

Low-temperature roasting, selective decomposition and water-leaching were used to extract nickel and copper from low-grade nickel sulfide ore with highly alkaline gangue. The effects of variable factors, such as the dosage of roasting additives, the ore particle size, roasting time and roasting temperature, selective decomposition temperature and leaching temperature on the conversion of metals were investigated. The roasting process contained liquid–solid and gas–solid reactions, which were controlled by internal diffusion. X-ray diffraction analysis of the roasting clinkers presented that the metal sulfides were first converted into intermediate products of metallic ammonium sulfate salts or metal sulfate by reacting with ammonium sulfate, and finally formed stable metal-sodium double salts by the action of sodium sulfate. Proportions of 99.13% nickel and 96.74% copper can be effectively extracted, while 95.95% iron was removed by selectively decomposing iron-containing sulfates to form ferric oxide, or separating as natrojarosite in a water-leaching process.

Notes

Acknowledgements

This study was supported by the National Basic Research Program of China (Grant 2014CB643405), National Natural Science Foundation of China (Grant 51204036) and the Fundamental Research Funds for the Central Universities (No. N182304016).

References

  1. 1.
    C. Wang, B. Wei, M. Zhou, D. Minh, and L. Qi, J. Asian Earth Sci. 154, 162 (2018).CrossRefGoogle Scholar
  2. 2.
    Y. Liu, W. Li, X. Lü, Y. Liu, B. Ruan, and X. Liu, Ore Geol. Rev. 91, 419 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Gericke and Y. Govender, Miner. Eng. 24, 1106 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Zhao, G. Gu, H. Wang, C. Wang, X. Wang, and C. Luo, Int. J. Miner. Process. 141, 68 (2015).CrossRefGoogle Scholar
  5. 5.
    G.D. Senior and S.A. Thomas, Int. J. Miner. Process. 78, 49 (2005).CrossRefGoogle Scholar
  6. 6.
    W. Chimonyo, K. Corin, J. Wiese, and C. O’Connor, Miner. Eng. 110, 57 (2017).CrossRefGoogle Scholar
  7. 7.
    K. Zhao, G. Gu, C. Wang, X. Rao, X. Wang, and X. Xiong, Miner. Eng. 77, 99 (2015).CrossRefGoogle Scholar
  8. 8.
    A.M. Amer, Hydrometallurgy 58, 251 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Xie, Y. Xu, L. Yan, and R. Yang, Hydrometallurgy 80, 54 (2005).CrossRefGoogle Scholar
  10. 10.
    W. Qin, S. Zhen, Z. Yan, M. Campbell, J. Wang, K. Liu, and Y. Zhang, Hydrometallurgy 98, 58 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Zhen, Z. Yan, Y. Zhang, J. Wang, M. Campbell, and W. Qin, Hydrometallurgy 96, 337 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Yang, W. Qin, S. Lai, J. Wang, Y. Zhang, F. Jiao, L. Ren, T. Zhuang, and Z. Chang, Hydrometallurgy 106, 32 (2011).CrossRefGoogle Scholar
  13. 13.
    H. Li and J. Ke, Hydrometallurgy 61, 151 (2001).CrossRefGoogle Scholar
  14. 14.
    H. Li and J. Ke, Miner. Eng. 14, 113 (2001).CrossRefGoogle Scholar
  15. 15.
    B. Xu, Y. Yang, Q. Li, T. Jiang, and G. Li, Hydrometallurgy 159, 87 (2016).CrossRefGoogle Scholar
  16. 16.
    G. Zhang, D. Luo, C. Deng, L. Lv, B. Liang, and C. Li, J. Alloys Compd. 742, 504 (2018).CrossRefGoogle Scholar
  17. 17.
    J. Li, Z. Chen, B. Shen, Z. Xu, and Y. Zhang, J. Clean. Prod. 140, 1148 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Liu, Y. Feng, H. Li, Z. Yang, and Z. Cai, Int. J. Miner. Metall. Mater. 19, 377 (2012).CrossRefGoogle Scholar
  19. 19.
    F. Cui, W. Mu, S. Wang, H. Xin, Q. Xu, Y. Zhai, and S. Luo, Miner. Eng. 123, 104 (2018).CrossRefGoogle Scholar
  20. 20.
    O. Levenspiel, Ind. Eng. Chem. Res. 38, 4140 (1999).CrossRefGoogle Scholar
  21. 21.
    Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie, Int. J. Miner. Process. 133, 105 (2014).CrossRefGoogle Scholar
  22. 22.
    C. Wen, Ind. Eng. Chem. 60, 34 (1968).CrossRefGoogle Scholar
  23. 23.
    E. Kavcı, T. Çalban, S. Çolak, and S. Kuşlu, J. Ind. Eng. Chem. 20, 2625 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Ashraf, Z.I. Zafar, and T.M. Ansari, Hydrometallurgy 80, 286 (2005).CrossRefGoogle Scholar
  25. 25.
    R.V. Siriwardane, J.A.P. Jr, E.P. Fisher, M.S. Shen, and A.L. Miltz, Appl. Surf. Sci. 152, 219 (1999).CrossRefGoogle Scholar
  26. 26.
    H. Tagawa, Thermochim. Acta 80, 23 (1984).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Wenning Mu
    • 1
    • 2
    • 3
    Email author
  • Zhipeng Huang
    • 1
    • 3
  • Haixia Xin
    • 1
    • 2
    • 3
  • Shaohua Luo
    • 1
    • 2
    • 3
  • Yuchun Zhai
    • 2
    • 3
  • Qian Xu
    • 4
  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.School of Resources and MaterialsNortheastern University at QinhuangdaoQinhuangdaoChina
  3. 3.Key Laboratory of Resources Cleaner Conversion and Efficient Utilization Qinhuangdao CityQinhuangdaoChina
  4. 4.School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations