Advertisement

JOM

pp 1–7 | Cite as

Effects of Crystal Orientation and Pre-existing Defects on Nanoscale Mechanical Properties of Yttria-Stabilized Tetragonal Zirconia Thin Films

  • Ning Zhang
  • Mohsen Asle ZaeemEmail author
Crystal Orientation Dependence of Mechanical and Thermal Properties in Functional Nanomaterials
  • 11 Downloads

Abstract

Effects of crystal orientation and pre-existing defects on tensile properties of yttria-stabilized tetragonal zirconia (YSTZ) thin films are investigated by large-scale molecular dynamics simulations. The tensile strength and strain show clear orientation dependence. Under uniaxial tensile loading, the YSTZ thin films are found to fail through fracture along {110} cleavage planes. <110> dislocations are observed to form in the [100]-, [010]- and [001]-oriented models. Besides, the {110} cleavage planes are noticed to be rough, twisted and tangled around the center of the [100]- and [001]-oriented films, which is responsible for large strains at tensile strength. The simulated Young’s modulus and tensile strength are comparable to the experimental and first principle values. Overall, pre-existing defects could change the fracture pathway and negatively affect the tensile strength and strain in most of the studied cases.

Notes

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0019279. The authors are grateful for the computer time allocation provided by the Extreme Science and Engineering Discovery Environment (XSEDE) to complete the simulations.

References

  1. 1.
    F. Wakai, S. Sakaguchi, and Y. Matsuno, Adv. Ceram. Mater. 1, 259 (1986).CrossRefGoogle Scholar
  2. 2.
    I. Nettleship and R. Stevens, Int. J. High Tech. Ceram. 3, 1 (1987).CrossRefGoogle Scholar
  3. 3.
    J. Chevalier, L. Gremillard, A.V. Virkar, and D.R. Clarke, J. Am. Ceram. Soc. 92, 1901 (2009).CrossRefGoogle Scholar
  4. 4.
    B. Benali, M.H. Ghysel, I. Gallet, A. Huntz, and M. Andrieux, Appl. Surf. Sci. 253, 1222 (2006).CrossRefGoogle Scholar
  5. 5.
    I. Al-Dawery and E. Butler, Compos. Part A Appl. Sci. Manuf. 32, 1007 (2001).CrossRefGoogle Scholar
  6. 6.
    Z. Du, X.M. Zeng, Q. Liu, A. Lai, S. Amini, A. Miserez, C.A. Schuh, and C.L. Gan, Scr. Mater. 101, 40 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Lai, Z. Du, C.L. Gan, and C.A. Schuh, Science 341, 1505 (2013).CrossRefGoogle Scholar
  8. 8.
    M. Asle Zaeem, N. Zhang, and M. Mamivand, Comput. Mater. Sci. 160, 120 (2019).CrossRefGoogle Scholar
  9. 9.
    N. Zhang and M. Asle Zaeem, Acta Mater. 120, 337 (2016).CrossRefGoogle Scholar
  10. 10.
    N. Zhang and M. Asle Zaeem, J. Appl. Phys. 122, 014302 (2017).CrossRefGoogle Scholar
  11. 11.
    N. Zhang and M. Asle Zaeem, J. Mater. Sci. 53, 5706 (2018).CrossRefGoogle Scholar
  12. 12.
    N. Zhang and M. Asle Zaeem, Eur. J. Mech. A. Solids 76, 80 (2019).CrossRefGoogle Scholar
  13. 13.
    X.M. Zeng, A. Lai, C.L. Gan, and C.A. Schuh, Acta Mater. 116, 124 (2016).CrossRefGoogle Scholar
  14. 14.
    N. Zhang and Y. Chen, J. Mater. Sci. 48, 785 (2013).CrossRefGoogle Scholar
  15. 15.
    N. Zhang, Q. Deng, Y. Hong, L. Xiong, S. Li, M. Strasberg, W. Yin, Y. Zou, C.R. Taylor, and G. Sawyer, J. Appl. Phys. 109, 063534 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Hong, N. Zhang, and M.A. Zaeem, Acta Mater. 145, 8 (2018).CrossRefGoogle Scholar
  17. 17.
    N. Zhang, Y. Hong, and Y. Chen, J. Mater. Sci. 54, 2779 (2019).CrossRefGoogle Scholar
  18. 18.
    W. Hu, S. Liu, Y. Zhang, J. Xiang, F. Wen, B. Xu, J. He, D. Yu, Y. Tian, and Z. Liu, J. Phys. Chem. C 116, 21052 (2012).CrossRefGoogle Scholar
  19. 19.
    N. Zhang and M. Asle Zaeem, npj Comput. Mater. 5, 54 (2019).Google Scholar
  20. 20.
    X. Li and B. Hafskjold, J. Phys.: Condens. Matter 7, 1255 (1995).Google Scholar
  21. 21.
    U. Messerschmidt, D. Baither, B. Baufeld, and M.J.M.S. Bartsch, Mater. Sci. Eng., A 233, 61 (1997).CrossRefGoogle Scholar
  22. 22.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  23. 23.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
  24. 24.
    L. Verlet, Phys. Rev. 159, 98 (1967).CrossRefGoogle Scholar
  25. 25.
    J. Zimmerman, C. Kelchner, P. Klein, J. Hamilton, and S. Foiles, Phys. Rev. Lett. 87, 165507 (2001).CrossRefGoogle Scholar
  26. 26.
    E.Y. Fogaing, Y. Lorgouilloux, M. Huger, and C. Gault, J. Mater. Sci. 41, 7663 (2006).CrossRefGoogle Scholar
  27. 27.
    E.H. Kisi and C.J. Howard, J. Am. Ceram. Soc. 81, 1682 (1998).CrossRefGoogle Scholar
  28. 28.
    G. Cousland, X. Cui, A. Smith, A. Stampfl, and C. Stampfl, J. Phys. Chem. Solids 122, 51 (2018).CrossRefGoogle Scholar
  29. 29.
    J.W. Adams, R. Ruh, and K. Mazdiyasni, J. Am. Ceram. Soc. 80, 903 (1997).CrossRefGoogle Scholar
  30. 30.
    J. Martínez-Fernández, M. Jiménez-Melendo, A. Domínguez-Rodríguez, K. Lagerlöf, and A. Heuer, Acta Metall. Mater. 41, 3171 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringColorado School of MinesGoldenUSA

Personalised recommendations