Advertisement

JOM

pp 1–8 | Cite as

Comparative Investigation on the Tribological Performances of TiN, TiCN, and Ti-DLC Film-Coated Stainless Steel

  • Jie Zhang
  • Jia LouEmail author
  • Hao HeEmail author
  • Youneng Xie
Properties of Interfaced Materials and Films
  • 38 Downloads

Abstract

TiN, TiCN, and Ti-diamond-like carbon (DLC) films were coated on 316L stainless steel surfaces by physical vapor deposition. All films exhibited uniform and dense surfaces with good adhesion. The Ti-DLC film demonstrated the lowest surface roughness. TiC and free C were observed in both the TiCN and Ti-DLC films. Among the three films, the TiCN film demonstrated the highest hardness and elastic modulus, followed by the Ti-DLC film and finally the TiN film. Under dry conditions, all films exhibited significantly lower coefficients of friction than stainless steel. The Ti-DLC film showed the lowest coefficient of friction and is thus considered an ideal anti-wear material for orthodontic applications. The friction mechanisms of the three films were also compared. Therefore, this study provides experimental data and a theoretical basis that may guide the production and modification of dental braces.

Notes

Acknowledgements

The authors acknowledge support from the Changsha Science and Technology Plan Project (grant no. KQ1801140), the Health and Family Planning Commission of Hunan Province (grant no. B2016244), and the Guangxi Science and Technology Plan Project (grant no. 2017GXNSFBA198187 and 2018GXNSFAA281237).

Supplementary material

11837_2019_3718_MOESM1_ESM.pdf (281 kb)
Supplementary material 1 (PDF 281 kb)

References

  1. 1.
    M.R. Monteiro, L.E. Silva, C.N. Elias, and V.O. Vilella, J. Appl. Oral Sci. 22, 228 (2014).CrossRefGoogle Scholar
  2. 2.
    C.H. Chen, K.L. Ou, and W.N. Wang, J. Exp. Clin. Med. 5, 30 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Paetyangkul, T. Türk, S. Elekdağ-Türk, A.S. Jones, P. Petocz, L.L. Cheng, and M.A. Darendeliler, Am. J. Orthod. Dentofac. 139, e279 (2011).CrossRefGoogle Scholar
  4. 4.
    M.J. Pappas, G. Makris, and F.F. Buechel, Clin. Orthop. Relat. Res. 317, 64 (1995).Google Scholar
  5. 5.
    I. Dion, F. Rouais, L. Trut, C. Baquey, J.R. Monties, and P. Havlik, Biomaterials 14, 169 (1993).CrossRefGoogle Scholar
  6. 6.
    J. Zuo, Y.N. Xie, J. Zhang, Q.P. Wei, B. Zhou, J.Q. Luo, Y.J. Wang, Z.M. Yu, and Z.G. Tang, Surf. Coat. Technol. 277, 227 (2015).CrossRefGoogle Scholar
  7. 7.
    F.J. Gil, E. Solano, A. Campos, F. Boccio, I. Sáez, M.V. Alfonso, and J.A. Planell, Bio-Med. Mater. Eng. 8, 335 (1998).Google Scholar
  8. 8.
    M. Zhao, S.L. Wang, N. Jiang, Y.J. Zhu, M.A. Fugen, and L.I. He, Mater. Rev. 10, 51 (2016).Google Scholar
  9. 9.
    J.L. Li, H.S. Zhong, and Y.X. Wang, RSC Adv. 6, 105854 (2016).CrossRefGoogle Scholar
  10. 10.
    L. Shan, Y.X. Wang, J.L. Li, H. Li, X.D. Wu, and J.M. Chen, Surf. Coat. Technol. 226, 40 (2013).CrossRefGoogle Scholar
  11. 11.
    D.C. Sutton, G. Limbert, D. Stewart, and R.J.K. Wood, Friction. 1, 210 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Mabuchi, T. Higuchi, and V. Weihnacht, Tribol. Int. 62, 130 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Akaike, D. Kobayashi, Y. Aono, M. Hiratsuka, A. Hirata, T. Hayakawa, and Y. Nakamura, Diamond Relat. Mater. 61, 109 (2016).CrossRefGoogle Scholar
  14. 14.
    Y.J. Jo, T.F. Zhang, M.J. Son, and K.H. Kim, Appl. Surf. Sci. 433, 1184 (2018).CrossRefGoogle Scholar
  15. 15.
    R. Gilmore and R. Hauert, Thin Solid Films 398, 199 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Kalin and J. Vižintin, Thin Solid Films 515, 2734 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Liu, G.Q. Li, W.W. Chen, Z.X. Mu, C.W. Zhang, and L. Wang, Thin Solid Films 475, 279 (2005).CrossRefGoogle Scholar
  18. 18.
    C.F. Hong, J.P. Tu, D.G. Liu, R.L. Li, and C.D. Gu, Appl. Surf. Sci. 256, 4859 (2010).CrossRefGoogle Scholar
  19. 19.
    G. Thorwarth, C.V. Falub, U. Müller, B. Weisse, C. Voisard, M. Tobler, and R. Hauert, Acta Biomater. 6, 2335 (2010).CrossRefGoogle Scholar
  20. 20.
    J.S. Diez, V.C. Brigagão, L. Cunha, A.C. Neves, and S.C.L. Da, Int. J. Oral Maxillofac. Implants 27, 1055 (2012).Google Scholar
  21. 21.
    Y. Shibata and Y. Tanimoto, J. Prosthodont. Res. 59, 20 (2015).CrossRefGoogle Scholar
  22. 22.
    T.H. Huang, J.U. Guo, and C.T. Kao, Surf. Coat. Technol. 205, 1917 (2010).CrossRefGoogle Scholar
  23. 23.
    D.S. Knight and W.B. White, J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
  24. 24.
    Y.S. Meng, J. Xia, L. Wang, G.R. Wang, F.L. Zhu, and Y. Zhang, Electrochim. Acta 261, 96 (2018).CrossRefGoogle Scholar
  25. 25.
    Q. Ding, L.P. Wang, Y.X. Wang, S.C. Wang, L.T. Hu, and Q.J. Xue, Tribol. Lett. 41, 43 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Arslan, H.H. Masjuki, M. Varman, M.A. Kalam, M.M. Quazi, and M.H. Mosarof, Theor. Chem. Acc. 104, 140 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Changsha Stomatological HospitalChangshaPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  4. 4.Research Centre for Materials Science and EngineeringGuangxi University of Science and TechnologyLiuzhouPeople’s Republic of China

Personalised recommendations