Advertisement

JOM

, Volume 71, Issue 10, pp 3407–3416 | Cite as

Nano-rolling: Roller Speed-Dependent Morphological Evolution and Mechanical Properties Enhancement in Nanoscale Mg

  • K. Vijay Reddy
  • Snehanshu PalEmail author
New Developments in Nanomechanical Methods
  • 222 Downloads

Abstract

Economical processing of textured nanoscale metallic systems is highly sought after, as tuning of crystallographic orientations has a significant impact on their mechanical properties. However, due to constraints in instrument set-up and the high cost involved, there are no experimental investigations on understanding the rolling process and its underlying deformation mechanism at the nanoscale level. Here, we propose a deformation model of a futuristic “nano-rolling” technique and investigate the deformation mechanism of single-crystal Mg subjected to nano-rolling using molecular dynamics simulation. The simulation has efficiently captured the dynamic structural evolution of {1-101} twins and the ∑11 grain boundary at an atomic level during the rolling process. On varying the roller speeds, the results have shown that faster speeds facilitate higher ultimate tensile strength (UTS) due to dislocation entanglement in the twin domain, whereas slower roller speed facilitates formation of the {0001} basal plane stacking faults along with twin boundaries, which results in comparatively lower UTS.

Notes

Acknowledgements

The authors acknowledge the Computer Centre of National Institute of Technology Rourkela for providing the high-performance computing facility (HPCF) necessary for carrying out this research work.

Conflict of interest

Both authors declare that they have no conflict of interests.

Supplementary material

11837_2019_3699_MOESM1_ESM.pdf (443 kb)
Supplementary material 1 (PDF 442 kb)

Supplementary material 2 (AVI 9110 kb)

Supplementary material 3 (AVI 10396 kb)

Supplementary material 4 (AVI 10282 kb)

References

  1. 1.
    M.A. Mahmoud, D. O’Neil, and M.A. El-Sayed, Nano Lett. 14, 743 (2014).Google Scholar
  2. 2.
    Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak, Nano Lett. 17, 1569 (2017).Google Scholar
  3. 3.
    B.H. An, I.T. Jeon, J.H. Seo, J.P. Ahn, O. Kraft, I.S. Choi, and Y.K. Kim, Nano Lett. 16, 3500 (2016).Google Scholar
  4. 4.
    G. Wu, K.C. Chan, L. Zhu, L. Sun, and J. Lu, Nature 545, 80 (2017).Google Scholar
  5. 5.
    T. Chandel, V. Thakur, M.B. Zaman, S.K. Dwivedi, and R. Poolla, Mater. Lett. 212, 279 (2018).Google Scholar
  6. 6.
    E. Chicardi, C.F. Gutiérrez-González, M.J. Sayagués, and C. Garcia-Garrido, Mater. Des. 145, 88 (2018).Google Scholar
  7. 7.
    V.R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, Phys. Chem. Chem. Phys. 21, 2519 (2019).Google Scholar
  8. 8.
    H. Li, P. Tian, H. Lu, W. Jia, H. Du, X. Zhang, Q. Li, and Y. Tian, ACS Appl. Mater. Interfaces 9, 5638 (2017).Google Scholar
  9. 9.
    R. Valiev, Nat. Mater. 3, 511 (2004).Google Scholar
  10. 10.
    F. Xu, F. Fang, Y. Zhu, and X. Zhang, Nanoscale Res. Lett. 12, 289 (2017).Google Scholar
  11. 11.
    M. Yoshino, N. Umehara, and S. Aravindan, Wear 266, 581 (2009).Google Scholar
  12. 12.
    M. Kumar, A. Kumar, and A.C. Abhyankar, ACS Appl. Mater. Interfaces 7, 3571 (2015).Google Scholar
  13. 13.
    S. Suwas and N.P. Gurao, J. Indian Inst. Sci. 88, 151 (2008).Google Scholar
  14. 14.
    X. Yu, R. Zhang, D. Weldon, S.C. Vogel, J. Zhang, D.W. Brown, Y. Wang, H.M. Reiche, S. Wang, S. Du, C. Jin, and Y. Zhao, Sci. Rep. 5, 12552 (2015).Google Scholar
  15. 15.
    L. Jinlong and L. Hongyun, Appl. Surf. Sci. 317, 125 (2014).Google Scholar
  16. 16.
    M. Naseri, M. Reihanian, and E. Borhani, Mater. Sci. Eng., A 673, 288 (2016).Google Scholar
  17. 17.
    G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, and J.W. Yeh, Intermetallics 69, 1 (2016).Google Scholar
  18. 18.
    G. Zhou, M.K. Jain, P. Wu, Y. Shao, D. Li, and Y. Peng, Int. J. Plast 79, 19 (2016).Google Scholar
  19. 19.
    A.A. Luo, JOM 54, 42 (2002).Google Scholar
  20. 20.
    A. Orozco-Caballero, D. Lunt, J.D. Robson, and J.Q. da Fonseca, Acta Mater. 133, 367 (2017).Google Scholar
  21. 21.
    Z. Wu and W.A. Curtin, Nature 526, 62 (2015).Google Scholar
  22. 22.
    M.A. Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, and C.N. Tomé, Acta Mater. 84, 349 (2015).Google Scholar
  23. 23.
    J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, and S.H. Oh, Acta Mater. 158, 407 (2018).Google Scholar
  24. 24.
    J. Peng, Z. Zhang, Z. Liu, Y. Li, P. Guo, W. Zhou, and Y. Wu, Sci. Rep. 8, 4196 (2018).Google Scholar
  25. 25.
    L. Jiang, M.T. Pérez-Prado, P.A. Gruber, E. Arzt, O.A. Ruano, and M.E. Kassner, Acta Mater. 56, 1228 (2008).Google Scholar
  26. 26.
    L.B. Tong, J.B. Zhang, Q.X. Zhang, Z.H. Jiang, C. Xu, S. Kamado, D.P. Zhang, J. Meng, L.R. Cheng, and H.J. Zhang, Mater. Charact. 115, 1 (2016).Google Scholar
  27. 27.
    B. Deng, P.C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, J. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, and H. Peng, Nano Lett. 15, 4206 (2015).Google Scholar
  28. 28.
    D. Goswami, J.C. Munera, A. Pal, B. Sadri, C.L.P. Scarpetti, and R.V. Martinez, Nano Lett. 18, 3616 (2018).Google Scholar
  29. 29.
    K.V. Reddy, S. Pal, and J. Non-Cryst, Solids 471, 243 (2017).Google Scholar
  30. 30.
    K.V. Reddy, C. Deng, and S. Pal, Acta Mater. 164, 347 (2019).Google Scholar
  31. 31.
    S.P. Coleman, M.M. Sichani, and D.E. Spearot, JOM 66, 408 (2014).Google Scholar
  32. 32.
    A. Kazemi and S. Yang, JOM 71, 1209 (2019).Google Scholar
  33. 33.
    K.V. Reddy and S. Pal, Steel Res. Int. (2019).  https://doi.org/10.1002/srin.201800636.CrossRefGoogle Scholar
  34. 34.
    K.V. Reddy and S. Pal, J. Appl. Phys. 125, 095101 (2019).Google Scholar
  35. 35.
    J. Yuan, K. Zhang, T. Li, X. Li, Y. Li, M. Ma, P. Luo, G. Luo, and Y. Hao, Mater. Des. 40, 257 (2012).Google Scholar
  36. 36.
    X. Hua, F. Lv, H. Qiao, P. Zhang, Q.Q. Duan, Q. Wang, P.D. Wu, S.X. Li, and Z.F. Zhang, Mater. Sci. Eng., A 618, 523 (2014).Google Scholar
  37. 37.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).Google Scholar
  38. 38.
    S.R. Wilson and M.I. Mendelev, J. Chem. Phys. 144, 144707 (2016).Google Scholar
  39. 39.
    D.J. Evans and B.L. Holian, J. Chem. Phys. 83, 4069 (1985).Google Scholar
  40. 40.
    J.D. Honeycutt and H.C. Andersen, J. Phys. Chem. 91, 4950 (1987).Google Scholar
  41. 41.
    A. Stukowski, V.V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).Google Scholar
  42. 42.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).MathSciNetGoogle Scholar
  43. 43.
    J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, and Z.D. Sha, Mater. Des. 77, 1 (2015).Google Scholar
  44. 44.
    D. Faken and H. Jónsson, Comput. Mater. Sci. 2, 279 (1994).Google Scholar
  45. 45.
    H.R. Wenk, I. Lonardelli, and D. Williams, Acta Mater. 52, 1899 (2004).Google Scholar
  46. 46.
    S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe, Acta Mater. 60, 3011 (2012).Google Scholar
  47. 47.
    K.V. Reddy and S. Pal, J. Mol. Model. 24, 277 (2018).Google Scholar
  48. 48.
    A. Ostapovets, P. Šedá, A. Jäger, and P. Lejček, Scr. Mater. 64, 470 (2011).Google Scholar
  49. 49.
    R.O. Ritchie, Nat. Mater. 10, 817 (2011).Google Scholar
  50. 50.
    Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature 419, 912 (2002).Google Scholar
  51. 51.
    C.E. Carlton and P.J. Ferreira, Acta Mater. 55, 3749 (2007).Google Scholar
  52. 52.
    M. Meraj, N. Yedla, and S. Pal, Mater. Lett. 169, 265 (2016).Google Scholar
  53. 53.
    Y.D. Wang, R.L. Peng, X.L. Wang, and R.L. McGreevy, Acta Mater. 50, 1717 (2002).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations