Advertisement

JOM

, Volume 71, Issue 12, pp 4305–4310 | Cite as

Dissolution Behaviors of Various Carbonaceous Materials in Liquid Iron: Interaction Between Graphite and Iron

  • Min-Min Sun
  • Jian-Liang Zhang
  • Ke-Jiang LiEmail author
  • Shan RenEmail author
  • Zi-Ming Wang
  • Chun-He Jiang
  • Hong-Tao Li
Advances in Surface Engineering
  • 80 Downloads

Abstract

The dissolution behaviors of carbon into iron and the interface characteristics were observed by a high-speed CCD camera and a scanning electronic microscope with energy disperse spectroscopy. Samples were obtained from two flexible and simple experiments: (1) the static drop method and (2) the iron cover method. The results show that carbon dissolution occurs when iron is still in solid form, leading to the decrease of the melting point from 1780 K (pure iron) to 1497 K (carburized iron). Carbon dissolved from graphite forms small irregular flake-like structures, then transforms into large-size dendritic crystals by intergrowth with the C added to the iron before heating. Compared with C atoms moving into iron, it is more difficult for Fe atoms to move up into graphite due to the strong repulsive force of the Fe-Fe bond. It is found that the thickness of the Fe-C interface is about 200 μm, which does not change with the initial C content of the iron-carbon alloy.

Notes

Acknowledgements

This work was part of a research project named “The dissolution behavior and carburizing ability of coke dissolution in hot metal” supported by the National Science Foundation of China (51774032); the National Science Foundation for Young Scientists of China (51804025); the National Key Research and Development Program of China (2017YFB0304300 and 2017YFB0304303); the Chinese Fundamental Research Funds for the Central Universities (FRF-TP-17-086A1).

Supplementary material

11837_2019_3664_MOESM1_ESM.pdf (331 kb)
Supplementary material 1 (PDF 331 kb)

References

  1. 1.
    M. Sun, X. Ning, J. Zhang, K. Li, G. Wang, and H. Wang, Chin. Metall. 28, 1 (2018).Google Scholar
  2. 2.
    K. Li, R. Khanna, J. Zhang, Z. Liu, V. Sahajwalla, T. Yang, and D. Kong, Fuel 133, 194 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Jiao, X. Fan, J. Zhang, K. Wang, and Y. Zhao, Ceram. Int. 44, 19981 (2018).CrossRefGoogle Scholar
  4. 4.
    K. Li, J. Zhang, Z. Liu, X. Ning, and T. Wang, Ind. Eng. Chem. Res. 53, 5737 (2014).CrossRefGoogle Scholar
  5. 5.
    X. Wang, Metallurgy of Iron and Steel, Part I: Ironmaking, 2nd ed. (Beijing: Metallurgical Industry Press, 2013), pp. 42–49.Google Scholar
  6. 6.
    D. Jang, Y. Kim, M. Shin, and J. Lee, Metall. Mater. Trans. B 43, 1308 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Khanna, F. Mccarthy, H. Sun, N. Simento, and V. Sahajwalla, Metall. Mater. Trans. B 36, 719 (2005).CrossRefGoogle Scholar
  8. 8.
    C.S. Nguyen, K. Ohno, T. Maeda, and K. Kunitomo, ISIJ Int. 57, 1491 (2017).CrossRefGoogle Scholar
  9. 9.
    C.S. Nguyen, K. Ohno, T. Maeda, and K. Kunitomo, ISIJ Int. 56, 1325 (2016).CrossRefGoogle Scholar
  10. 10.
    F. Zhang, J. Iron. Steel Res. Int. 20, 53 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Zhang, H. Yan, 5th Int. Cong. on Science and Technology of Ironmaking, Beijing, 13, 201 (2009).Google Scholar
  12. 12.
    Z. Liu, J. Zhang, H. Zuo, and T. Yang, ISIJ Int. 52, 1713 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Ohno, A. Babich, J. Mitsue, T. Maeda, D. Senk, H.W. Gudenau, and M. Shimizu, ISIJ Int. 52, 1482 (2012).CrossRefGoogle Scholar
  14. 14.
    C. Wu and V. Sahajwalla, Metall. Mater. Trans. B 31, 243 (2000).CrossRefGoogle Scholar
  15. 15.
    M.W. Chapman, Insoluble oxide product formation and its effect on coke dissolution in liquid iron, the University of Wollongong, Doctoral Dissertation, 72 (2009).Google Scholar
  16. 16.
    S.T. Cham, R. Khanna, V. Sahajwalla, R. Sakurovs, and D. French, ISIJ Int. 49, 1860 (2009).CrossRefGoogle Scholar
  17. 17.
    B.J. Monaghan, M.W. Chapman, and S.A. Nightingale, Steel Res. Int. 81, 829 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Khanna, V. Sahajwalla, B. Rodgers, and F. McCarthy, Metall. Mater. Trans. B 37, 623 (2006).CrossRefGoogle Scholar
  19. 19.
    M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, and R.J. Nightingale, Metall. Mater. Trans. B 39, 418 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Gudenau, J. Mulanza, and D. Sharma, Steel Res. 61, 97 (1990).CrossRefGoogle Scholar
  21. 21.
    V. Sahajwalla and R. Khanna, Metall. Mater. Trans. B 31, 1517 (2000).CrossRefGoogle Scholar
  22. 22.
    V. Sahajwalla and R. Khanna, Acta Mater. 50, 663 (2002).CrossRefGoogle Scholar
  23. 23.
    F. Mccarthy, R. Khanna, V. Sahajwalla, and N. Simento, ISIJ Int. 45, 1261 (2005).CrossRefGoogle Scholar
  24. 24.
    F. McCarthy, V. Sahajwalla, J. Hart, and N. Saha-Chaudhury, Metall. Mater. Trans. B 34, 573 (2003).CrossRefGoogle Scholar
  25. 25.
    Y. Deng, J. Zhang, and K. Jiao, ISIJ Int. 58, 815 (2018).CrossRefGoogle Scholar
  26. 26.
    K. Ohno, T. Maeda, K. Nishioka, and M. Shimizu, ISIJ Int. 50, 53 (2010).CrossRefGoogle Scholar
  27. 27.
    Y. Yin, W. Li, H. Shen, J. Zhou, H. Nan, M. Deng, X. Shen, and Z. Tu, ISIJ Int. 58, 1022 (2018).CrossRefGoogle Scholar
  28. 28.
    F. Mccarthy, Interfacial phenomena and dissolution of carbon from chars into liquid iron during pulverised coal injection in a blast furnace. University of New South Wales, Doctoral Dissertation, 88 (2004).Google Scholar
  29. 29.
    K. Li, J. Zhang, Z. Liu, M. Barati, J. Zhong, M. Wei, G. Wang, and K. Jiao, T. Yang. Metall. Mater. Trans. B 46, 1104 (2015).CrossRefGoogle Scholar
  30. 30.
    S.S. Gornostayev, T.M. Fabritius, O. Kerkkonen, and J.J. Harkki, Int. J. Miner. Metall. Mater. B 19, 478 (2012).CrossRefGoogle Scholar
  31. 31.
    W. Wang, K.M. Thomas, R.M. Poultney, and R.R. Willmers, Carbon 33, 1525 (1995).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.School of Chemical EngineeringThe University of QueenslandSt LuciaAustralia
  3. 3.College of Material Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations