pp 1–11 | Cite as

Hot Deformation Behavior and Workability of As-Cast Dilute Mg-1.2Zn-0.2Y Alloy

  • Xu Zhiming
  • Chen Xinrong
  • Yao Bin
  • Teng JieEmail author
  • Jiang Fulin
  • Fu Dingfa
  • Zhang Hui
  • Chen ChaoyiEmail author
Microstructure Evolution During Deformation Processing


Flow stress behavior of as-cast dilute Mg-1.2Zn-0.2Y alloy was studied via uniaxial compression test at temperature (300–450°C) and strain rate (0.001–1 s−1) using a Gleeble-3500 thermal simulation tester. The constitutive equation with the deformation activation energy of 275.9 kJ/mol was established to describe the thermal deformation behavior of the tested material. The processing maps for the Mg alloy were also constructed based on dynamic material modeling. Optical microscopy, x-ray diffraction, transmission electron microscopy and electron backscatter diffraction were utilized to characterize the microstructures formed at elevated temperature. The results indicated that dynamic recovery was the dominant work-softening mechanism of the Mg-1.2Zn-0.2Y alloy at lower temperature and dynamic recrystallization mainly contributed to the deformation softening at higher temperature. The optimal processing parameters of the safe deformation window were identified as temperature of 420–450°C and strain rate of 0.001–0.01 s−1.



The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51574118, 51774124, 51574095) and Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province, China (Grant No. 2016GK4056).

Supplementary material

11837_2019_3659_MOESM1_ESM.pdf (241 kb)
Supplementary material 1 (PDF 241 kb)


  1. 1.
    Z. Yang, J. Li, J. Zhang, and G.W. Lorimer, Acta Metall. 21, 313 (2008).CrossRefGoogle Scholar
  2. 2.
    N. Mo, Q. Tan, and M. Bermingham, Mater. Des. 155, 422 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Tekumalla, S. Seetharaman, A. Almajid, and M. Gupta, Metals 5, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Yua, H. Yan, J. Chen, B. Su, Y. Zheng, Y. Shen, and Z. Ma, J. Alloys Compd. 586, 757 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Roostaei, M.H. Parsa, R. Mahmudi, and H. Mirzadeh, J. Alloys Compd. 631, 1 (2015).CrossRefGoogle Scholar
  6. 6.
    B. Pourbahari, H. Mirzadeh, and M. Emamy, J. Mater. Eng. Perform. 27, 1327 (2018).CrossRefGoogle Scholar
  7. 7.
    B. Pourbahari, H. Mirzadeh, and M. Emamy, Mater. Sci. Eng., A 680, 39 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, X. Zeng, L. Liu, L. Chen, H. Zhou, Q. Li, and Y. Zhu, Mater. Sci. Eng., A 373, 320 (2004).CrossRefGoogle Scholar
  9. 9.
    M. Socjusz-Podosek and L. Lity nska, Mater. Chem. Phys. 80, 472 (2003).CrossRefGoogle Scholar
  10. 10.
    D. Xu, W. Tang, L. Liu, Y. Xu, and E. Han, J. Alloys Compd. 432, 129 (2007).CrossRefGoogle Scholar
  11. 11.
    J.Y. Lee, H.K. Lim, D.H. Kim, and W.T. Kim, Mater. Sci. Eng., A 491, 349 (2008).CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, X. Liu, W. Hu, J. Li, Q. Le, L. Bao, Z. Zhu, and J. Cui, J. Alloys Compd. 624, 116 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Müller, G. Garcés, P. Pérez, and P. Adeva, J. Alloys Compd. 443, L1 (2007).CrossRefGoogle Scholar
  14. 14.
    D.H. Bae, M.H. Lee, and K.T. Kim, J. Alloys Compd. 342, 445 (2002).CrossRefGoogle Scholar
  15. 15.
    D.H. Bae, S.H. Kim, and D.H. Kim, Acta Mater. 50, 2343 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Jiang, C. Xu, T. Nakata, H. Yan, R. Chen, and S. Kamado, Mater. Sci. Eng., A 678, 329 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Jiang, C. Xu, and T. Nakata, J. Alloys Compd. 668, 13 (2016).CrossRefGoogle Scholar
  18. 18.
    H. Mirzadeh, Mech. Mater. 77, 80 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Karami and R. Mahmudi, Mater. Lett. 81, 235 (2012).CrossRefGoogle Scholar
  20. 20.
    H. Mirzadeh and A. Najafizadeh, Mater. Des. 31, 1174 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Yu, Z. Zhang, Q. Wang, X. Yin, J. Cui, and H. Qi, J. Alloys Compd. 704, 382 (2017).CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, X. Yang, Z. Xiao, J. Wang, D. Zhang, C. Liu, and T. Sakai, Mater. Des. 97, 25 (2016).CrossRefGoogle Scholar
  23. 23.
    B. Lva, J. Peng, Y. Wang, X. An, L. Zhong, A. Tang, and F. Pan, Mater. Des. 53, 357 (2014).CrossRefGoogle Scholar
  24. 24.
    X. Xia, Q. Chen, S. Huang, J. Lin, C. Hu, and Z. Zhao, J. Alloys Compd. 644, 308 (2015).CrossRefGoogle Scholar
  25. 25.
    Q. Chen, X. Xia, B. Yuan, D. Shu, Z. Zhao, and J. Han, Mater. Sci. Eng., A 593, 38 (2014).CrossRefGoogle Scholar
  26. 26.
    Y.V.R.K. Prasad and K.P. Rao, Mater. Sci. Eng., A 487, 316 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Aliakbari Sani, G.R. Ebrahimi, and A.R. Kiani Rashid, J. Alloys Compd. 4, 104 (2016).CrossRefGoogle Scholar
  28. 28.
    G. Quan, T. Ku, and W. Song, Mater. Des. 32, 2462 (2011).CrossRefGoogle Scholar
  29. 29.
    J. Li, J. Liu, and Z. Cui, Mater. Des. 56, 889 (2014).CrossRefGoogle Scholar
  30. 30.
    C.M. Sellars and W.J. McTegart, Acta Metall. 14, 1136 (1966).CrossRefGoogle Scholar
  31. 31.
    H. McQueen and N. Ryan, Mater. Sci. Eng., A 322, 43 (2002).CrossRefGoogle Scholar
  32. 32.
    M.A. Jabbari Taleghani, E.M. Ruiz Navas, M. Salehi, and J.M. Torralba, Mater. Sci. Eng., A 534, 624 (2012).CrossRefGoogle Scholar
  33. 33.
    D. Ponge and G. Gottstein, Acta Mater. 46, 69 (1998).CrossRefGoogle Scholar
  34. 34.
    M. Chaman-ara, G.R. Ebrahimi, and H.R. Ezatpour, Trans. Nonferrous Metals Soc. China 28, 629 (2018).CrossRefGoogle Scholar
  35. 35.
    T.Y. Kwak, H.K. Lim, and W.J. Kim, J. Alloys Compd. 644, 645 (2015).CrossRefGoogle Scholar
  36. 36.
    H. Mirzadeh, Mater. Chem. Phys. 152, 123 (2015).CrossRefGoogle Scholar
  37. 37.
    H. Mirzadeh, J. Mater. Res. 5, 1 (2016).Google Scholar
  38. 38.
    A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Pergamon: Elsevier, 2004), pp. 219–224.Google Scholar
  39. 39.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, and K.A. Lark, Metall. Trans. A 15, 1883 (1984).CrossRefGoogle Scholar
  40. 40.
    O. Sivakesavam and Y.V.R.K. Prasad, Mater. Sci. Eng., A 362, 118 (2003).CrossRefGoogle Scholar
  41. 41.
    X. Xia, Q. Chen, and K. Zhang, Mater. Sci. Eng., A 587, 283 (2013).CrossRefGoogle Scholar
  42. 42.
    Y.V.R.K. Prasad, Indian J. Technol. 28, 435 (1990).Google Scholar
  43. 43.
    Z. Zhang, H. Zhou, and X. Liu, Mater. Sci. Eng., A 565, 213 (2013).CrossRefGoogle Scholar
  44. 44.
    S.G. Hong, S.H. Park, and C.S. Lee, Scr. Mater. 64, 145 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Materials and MetallurgyGuizhou UniversityGuiyangPeople’s Republic of China

Personalised recommendations