pp 1–8 | Cite as

Preparation of Sodium Pyroantimonate from Antimony Trioxide by Pressure Oxidation in NaOH Solution

  • Weifeng Liu
  • Kunkun Zhang
  • Duchao Zhang
  • Lin ChenEmail author
  • Liangqiang Liu
  • Tianzu Yang
Urban Mining: Characterization and Recycling of Solid Wastes


A technical route for preparing sodium pyroantimonate by pressure oxidation in NaOH solution is proposed. The E-pH diagram of the Sb-H2O system shows that Sb(III) from antimony trioxide can be oxidized to Sb(V) to prepare sodium pyroantimonate under different alkaline concentrations. In the direct pressure oxidation technique, the product was doped with antimony trioxide due to the diffusion effect. By comparison, the technique of complex leaching-pressure oxidation could prepare an eligible product, which presented regular hexahedral morphology. Nevertheless, sodium pyroantimonate transformed to NaSbO3 at excessive temperature. The sodium antimonite solution prepared in the leaching process contained 18 g/L Sb. The antimony precipitation ratio in the pressure oxidation process increased with the stirring speed and oxygen partial pressure. Under the optimum conditions of temperature of 150°C, oxygen partial pressure of 2.0 MPa, stirring speed of 1000 rpm, and reaction time of 2 h, the antimony precipitation ratio was 97.70%.



The authors acknowledge support from the National Key Research and Development Program of China (No. 2018YFC1901604), Young Scientists Fund of National Natural Science Foundation of China (Grant No. 51404296), and Postdoctoral Science Foundation of China (Grant No. 2016M602427).


  1. 1.
    T.C. Zhao, Antimony (Beijing: Metallurgical Industry Press, 1987), pp. 70–85.Google Scholar
  2. 2.
    C.G. Anderson, Chem. Erde 72, 3 (2012).CrossRefGoogle Scholar
  3. 3.
    R. Binious, C.J. Carmalt, and I.P. Parkin, Polyhedron 25, 15 (2006).Google Scholar
  4. 4.
    W.Y. Shu, Nonferrous Metal Fine Chemical Products Production and Application (Changsha: Central South University of Technology Press, 1995), pp. 12–16.Google Scholar
  5. 5.
    Y.T. Liang and N.Y. Zhong, Inorg. Salt Ind. 1, 14 (1991).Google Scholar
  6. 6.
    O. Celep, İ. Alp, and H. Deveci, Hydrometallurgy 105, 234 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Ubaldini, F. Veglio, P. Fornari, and C. Abbruzzese, Hydrometallurgy 57, 187 (2000).CrossRefGoogle Scholar
  8. 8.
    Y.S. Tan, Hunan Nonferrous Met. 11, 34 (1995).MathSciNetGoogle Scholar
  9. 9.
    T.Z. Yang, Q.L. Lai, J.J. Tang, and G. Chu, J. Cent. South Univ. Technol. (Engl. Ed.) 2, 107 (2002).CrossRefGoogle Scholar
  10. 10.
    X.X. Ma, K.L. Yao, and J.G. Wu, Inorg. Salt Ind. 5, 4 (1995).Google Scholar
  11. 11.
    X.C. Liu, Rare Met. Carbides 113, 135 (1993).Google Scholar
  12. 12.
    K.X. Jiang, Pressure Hydrometallurgy (Beijing: Metallurgical Industry Press, 2016), pp. 1–7.Google Scholar
  13. 13.
    D.C. Zhang, Q.K. Xiao, W.F. Liu, L. Chen, T.Z. Yang, and Y.N. Liu, Hydrometallurgy 151, 91 (2015).CrossRefGoogle Scholar
  14. 14.
    T.Z. Yang, H.B. Ling, D.C. Zhang, Y.T. Guo, W.F. Liu, L. Chen, and S. Rao, Int. J. Miner. Process. 166, 37 (2017).CrossRefGoogle Scholar
  15. 15.
    T.Z. Yang, S. Rao, W.F. Liu, D.C. Zhang, and L. Chen, Hydrometallurgy 169, 571 (2017).CrossRefGoogle Scholar
  16. 16.
    J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (Beijing: Science Press, 2003), p. 6.Google Scholar
  17. 17.
    H.G. Li, Metallurgical Principle (Beijing: Science Press, 2005), pp. 325–330.Google Scholar
  18. 18.
    J.S. Wang, Hunan Nonferrous Met. 7, 240 (1991).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Weifeng Liu
    • 1
  • Kunkun Zhang
    • 1
  • Duchao Zhang
    • 1
  • Lin Chen
    • 1
    Email author
  • Liangqiang Liu
    • 1
  • Tianzu Yang
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations