pp 1–5 | Cite as

Evolution of Electrical Behavior Due to Nanosilver Concentration Influence on Nanosilver-Doped Poly-Phenylene-Sulfide Polymer Conductor

  • Mohammad Asyraf
  • Mahmood AnwarEmail author
  • Sumaiya Islam
  • Sujan Debnath
  • Jerren Wong
  • S. Izman
Technical Article


Conductive polymers have been attracting increasing interest in recent years. Their properties such as corrosion resistance and moldability have shown their potential as an alternative production material to conventional metals such as copper and tin. Among those that have benefited from the application of conductive polymers are the semiconductor and microelectronics industry due to their low conductivity requirements. However, there are still some challenges in high voltage applications because of the limited charge transfer capabilities in high-energy transmission utilizing high-voltage electricity. This includes poly(1,4-phenylene sulfide) or PPS, which has had various dopants such as copper particles added to enhance the electrical properties. Silver is also known to be an excellent electrical conductor and, in nanoparticle form, could diffuse effectively into the polymer matrix and improve its electrical behavior. A set of experiments were carried out to study the organometallic behavior of nanosilver-doped poly(1,4-phenylene sulfide) (PPS) with six different mixing ratios. SEM micrographs have shown an interesting change in electrical properties in the overall polymer morphology. It was observed that there was a change in the electrical conductivity of the PPS as the concentration of nanosilver increased. The results from this study could contribute to the establishment of more effective parameters in the doping of PPS with nanosilver, and pave the way to the development of improved conductive polymers for high-voltage electrical energy transmissions.



Authors would like to express their gratitude to Mechanical Engineering Department of Curtin University, Malaysia and UTM Mechanical Engineering Faculty for the support to this research. Authors would also like to thank Crest Nanosolutions Sdn Bhd for electron microscopy facility.


  1. 1.
    C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).CrossRefGoogle Scholar
  2. 2.
    L. Zhang, W. Du, A. Nautiyal, Z. Liu, and X. Zhang, Sci. China Mater. 61, 303 (2018).CrossRefGoogle Scholar
  3. 3.
    L. Yuan, C. Wan, X. Ye, and F. Wu, Electrochim. Acta 213, 115 (2016).CrossRefGoogle Scholar
  4. 4.
    P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene, 2nd ed. (Marlboro: Springer, 2018), pp. 159–174.CrossRefGoogle Scholar
  5. 5.
    S. Wang, Z. Zhou, J. Zhang, G. Fang, and Y. Wang, J. Mater. Sci. 52, 13966 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Xu, S. Zhu, Z. Zhang, M. Yu, and X. Yuan, J. Wuhan Univ. Technol. 32, 1318 (2017).CrossRefGoogle Scholar
  7. 7.
    D. Lian, J. Dai, R. Zhang, and M. Niu, J. Therm. Anal. Calorim. 129, 377 (2017).CrossRefGoogle Scholar
  8. 8.
    X. Yang, L. Duan, and X. Ran, Polym. Bull. 74, 641 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Sobkowicz-Kline, B.M. Budhlall, and J.L. Mead, Handbook of Industrial Chemistry and Biotechnology, ed. J.A. Kent (Jupiter: Springer, 2012), p. 573.Google Scholar
  10. 10.
    M. Asyraf, M. Anwar, L.M. Sheng, and M.K. Danquah, JOM 69, 2515 (2017).CrossRefGoogle Scholar
  11. 11.
    P. Kar, Doping in Conjugated Polymers, 1st ed. (Hoboken: Wiley, 2013), pp. 1–18.CrossRefGoogle Scholar
  12. 12.
    R. Yuan, H. Liu, P. Yu, H. Wang, and J. Liu, J. Polym. Res. 25, 151 (2018).CrossRefGoogle Scholar
  13. 13.
    J. Tsukamoto and K. Matsumura, Jpn. J. Appl. Phys. 2, L584 (1984).CrossRefGoogle Scholar
  14. 14.
    S. Tokito, T. Tsutsui, and S. Saito, Polym. J. 17, 959 (1985).CrossRefGoogle Scholar
  15. 15.
    R.R. Chance, L.W. Shacklette, H. Eckhardt, J.M. Sowa, R.L. Elsenbaumer, D.M. Ivory, G.G. Miller, and R.H. Baughman, in Conducting Complexes of a Processible Polymer: Poly(p-Phenylene Sulfide) in Conductive Polymers, ed. by R.B. Saymor. Proceedings of a Symposium Held at the 2nd Chemical Congress of the North American Continent (New York: Plenum, 1981), p. 125.Google Scholar
  16. 16.
    S. Saito, T. Tsutsui, S. Tokito, T. Hara, and H.-T. Chiu, Polym. J. 17, 209 (1985).CrossRefGoogle Scholar
  17. 17.
    W.H. Cao, J. Gong, D.Y. Yang, G. Gao, H.G. Wang, J.F. Ren, and S.S. Chen, J. Cent. South. Univ. 24, 2001 (2017).CrossRefGoogle Scholar
  18. 18.
    R.K. Goyal, K.R. Kambale, S.S. Nene, B.S. Selukar, S. Arbuj, and U.P. Mulik, Mater. Chem. Phys. 128, 114 (2011).CrossRefGoogle Scholar
  19. 19.
    A.M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis, Compos. Part A Appl. Sci. 43, 603 (2012).CrossRefGoogle Scholar
  20. 20.
    P. Gupta, S.K. Yadav, B. Agrawal, and R.N. Goyal, Sens. Actuat. B Chem. 204, 791 (2014).CrossRefGoogle Scholar
  21. 21.
    D. Zhu and M. Wu, J. Electron. Mater 47, 5133 (2018).CrossRefGoogle Scholar
  22. 22.
    A.G. Massey, N.R. Thompson, and B.F.G. Johnson, The Chemistry of Copper, Silver and Gold, 1st ed. (New York: Pergamon, 1973), p. 79.Google Scholar
  23. 23.
    P. Si, J. Trinidad, L. Chen, B. Lee, A. Chen, J. Persic, R. Lyn, Z. Leonenko, and B. Zhao, J. Mater. Sci. Mater. Electron. 29, 1837 (2018).CrossRefGoogle Scholar
  24. 24.
    M.F. Ghadim, A. Imani, and G. Farzi, J. Nanostruct. Chem. 4, 101 (2014).CrossRefGoogle Scholar
  25. 25.
    Y.K. Hong, C.Y. Lee, C.K. Jeong, J.H. Sim, K. Kim, J. Joo, M.S. Kim, J.Y. Lee, S.H. Jeong, and S.W. Byun, Curr. Appl. Phys. 1, 439 (2001).CrossRefGoogle Scholar
  26. 26.
    S. Radhakrishnan, C. Sumathi, A. Umar, S. JaeKim, J. Wilson, and V. Dharuman, Biosens. Bioelectron. 47, 133 (2013).CrossRefGoogle Scholar
  27. 27.
    H. Bagheri, S. Banihashemi, and S. Jelvani, J. Chromatogr. A 1460, 1 (2016).CrossRefGoogle Scholar
  28. 28.
    J. Nowaczyk, K. Kadac, I. Tarach, and E. Olewnik-Kruszkowska, J. Mater. Sci. Mater. Electron. 28, 19071 (2017).CrossRefGoogle Scholar
  29. 29.
    J. Tsukamoto, S. Fukuda, K. Tanaka, and T. Yamabe, Synth. Met. 17, 673 (1987).CrossRefGoogle Scholar
  30. 30.
    D.-H. Ko and K. Min, Polym. Eng. Sci. 34, 1564 (1994).CrossRefGoogle Scholar
  31. 31.
    H. Cartwright, The Chem. Edu. 6, 262 (2001).CrossRefGoogle Scholar
  32. 32.
    I. Kubelík and A. Tříska, Czech. J. Phys. Sect. B 22, 506 (1972).CrossRefGoogle Scholar
  33. 33.
    K.-S. Kim, I.-J. Kim, and S.-J. Park, Synth. Met. 160, 2355 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentCurtin University, MalaysiaMiriMalaysia
  2. 2.Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations