Advertisement

JOM

, Volume 71, Issue 9, pp 3285–3292 | Cite as

Enhancement of Magnetic and Transport Properties of Superconducting Fe1−xMnxSe0.5Te0.5 Single Crystals

  • M. OzabaciEmail author
  • K. Yakinci
  • M. E. Yakinci
Technical Article
  • 46 Downloads

Abstract

In this article, we provide the synthesis and characterization of manganese-substituted FeSe0.5Te0.5 single crystals in the nominal composition range of Fe1−xMnxSe0.5Te0.5 (x = 0.01, 0.05, 0.1) via the self-flux method. It is observed that Mn-substitution improved the bulk superconducting properties of FeSe0.5Te0.5 considerably by increasing the superconducting transition temperatures determined from both resistive and magnetic transitions. Our results reveal that x = 0.05 Mn-substituted sample yields the most appropriate superconducting performance, considering all the samples employed. The corresponding \( T_{\text{c}}^{\text{onset}} \), \( T_{\text{c}}^{\text{zero}} \), and \( T_{\text{c}}^{\text{mag}} \) values are obtained to be 15.5 K, 13.7 K, and 14.5 K respectively, which display a clear improvement compared to the reported values in the literature. The \( J_{c}^{\text{mag}} \) value of the samples is calculated using DC magnetization data. The best \( J_{c}^{\text{mag}} \) value is computed to be 4.7 × 104 A/cm2 for x = 0.05 sample at 8 K under 0.2 kOe, and it decreases to the values 2.54 × 104 A/cm2 and 1.34 × 104 A/cm2 for the x = 0.01 and x = 0.1 samples, respectively.

Notes

References

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature 453, 376 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Yang, Z.C. Li, W. Lu, W. Yi, X.L. Shen, Z.A. Ren, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, and Z.X. Zhao, Supercond. Sci. Technol. 21, 082001 (2008).CrossRefGoogle Scholar
  4. 4.
    Z.A. Ren, J. Yang, W. Lu, W. Yi, G.C. Che, X.L. Dong, L.L. Sun, and Z.X. Zhao, Europhys. Lett. 82, 57002 (2008).CrossRefGoogle Scholar
  5. 5.
    Z. Wei, H. Li, W. Hong, Z. Lv, H. Wu, X. Guo, and K.J. Ruan, J. Supercond. Nov. Magn. 21, 213 (2008).CrossRefGoogle Scholar
  6. 6.
    X. Wang, S.R. Ghorbani, G. Peleckis, and S. Dou, Adv. Mater. 21, 236 (2009).CrossRefGoogle Scholar
  7. 7.
    C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, EPL 83, 67006 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).CrossRefGoogle Scholar
  9. 9.
    X.C. Wang, Q.Q. Liu, Y.X. Lv, W.B. Gao, L.X. Yang, R.C. Yu, F.Y. Li, and C.Q. Jin, Solid State Commun. 148, 538 (2008).CrossRefGoogle Scholar
  10. 10.
    F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, and M.K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).CrossRefGoogle Scholar
  11. 11.
    Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010).CrossRefGoogle Scholar
  12. 12.
    Z.A. Ren and Z.X. Zhao, Adv. Mater. 21, 1 (2009).CrossRefGoogle Scholar
  13. 13.
    H.H. Wen, G. Mu, X.Y. Zhu, P. Cheng, L. Fang, F. Han, B. Zeng, and B. Shen, Phys. C 469, 894 (2009).CrossRefGoogle Scholar
  14. 14.
    Y.P. Qi, L. Wang, Z.S. Gao, D.L. Wang, X.P. Zhang, Z.Y. Zhang, and Y.W. Ma, EPL 89, 67007 (2010).CrossRefGoogle Scholar
  15. 15.
    Y. Kamihara, T. Nomura, M. Hirano, J.E. Kim, K. Kato, M. Takata, Y. Kobayashi, S. Kitao, S. Higashitaniguchi, Y. Yoda, M. Seto, and H. Hosono, New J. Phys. 12, 033005 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Hartwig, N. Schäfer, M. Schulze, S. Landsgesell, D. Abou-Ras, ChGF Blumb, S. Wurmehl, A. Sokolowski, B. Büchner, and K. Prokeš, Phys. B Condens. Matter 531, 102 (2018).CrossRefGoogle Scholar
  17. 17.
    F. Sun, Z. Guo, H. Zhang, and W. Yuan, J. Alloys Cmpd. 700, 43 (2017).CrossRefGoogle Scholar
  18. 18.
    E.H.H. Lim, S.A. Halim, S.K. Chen, J.Y.C. Liew, K.B. Tan, M.M.A. Kechik, and X. Qi, Appl. Phys. A 123, 395 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Subedi, L. Zhang, D.J. Singh, and M.H. Du, Phys. Rev. B 78, 134514 (2008).CrossRefGoogle Scholar
  20. 20.
    Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009).Google Scholar
  21. 21.
    S. Medvedev, T.M. McQueen, I. Trojan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009).CrossRefGoogle Scholar
  22. 22.
    M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, Phys. Rev. B 78, 224503 (2008).CrossRefGoogle Scholar
  23. 23.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 94, 012503 (2009).CrossRefGoogle Scholar
  24. 24.
    F. Nabeshima, Y. Kobayashi, Y. Imai, I. Tsukada, and A. Maeda, Phys. Procedia 27, 13 (2012).CrossRefGoogle Scholar
  25. 25.
    E.L. Thomas, W.W. Ng, D. Phelan, and J.N. Millican, J. Appl. Phys. 105, 073906 (2009).CrossRefGoogle Scholar
  26. 26.
    A.M. Zhang, T.L. Xia, L.R. Kong, J.H. Xiao, and Q.M. Zhang, Condens. Matter. 22, 245701 (2010).CrossRefGoogle Scholar
  27. 27.
    Y.K. Li, C.Y. Shen, H.J. Guo, C. Lv, X.J. Yang, L. Zhang, Y.K. Luo, G.H. Cao, and Z.A. Xu, J. Phys. Condens. Matter 24, 232202 (2012).CrossRefGoogle Scholar
  28. 28.
    V.P.S. Awana, A. Pal, A. Vajpayee, B. Gahtori, and H. Kishan, Phys. C 471, 77 (2011).CrossRefGoogle Scholar
  29. 29.
    Sudesh, S. Rani, and G.D. Varma, Phys. C 485, 137 (2013).Google Scholar
  30. 30.
    S. Pandya, S. Sherif, L.S.S. Chandra, and V. Ganesan, Supercond. Sci. Technol. 24, 045011 (2011).CrossRefGoogle Scholar
  31. 31.
    C.M. Yang, P.W. Chen, I.G. Chen, X.D. Qi, D.C. Yan, and M.K. Wu, Supercond. Sci. Technol. 25, 09510 (2012).Google Scholar
  32. 32.
    N.K. Guler, B. Ozcelik, A. Ekicibil, K. Onar, M.E. Yakinci, H. Okazaki, H. Takeya, and Y. Takano, Mater. Chem. Phys. 164, 157 (2015).CrossRefGoogle Scholar
  33. 33.
    N. Chen, Y. Liu, Z. Ma, and H. Li, Mater. Lett. 175, 19 (2016).Google Scholar
  34. 34.
    M. Migita, Y. Takikawa, K. Sugai, M. Takeda, M. Uehara, T. Kuramoto, Y. Takano, Y. Mizuguchi, and Y. Kimishima, Phys. C 484, 66 (2013).CrossRefGoogle Scholar
  35. 35.
    A. Günther, J. Deisenhofer, Ch. Kant, H.A.K. Nidda, V. Tsurkan, and A. Loidl, Supercond. Sci. Technol. 24, 045009 (2011).CrossRefGoogle Scholar
  36. 36.
    G.S. Thakur, Z. Haque, P. Neha, L.C. Gupta, S. Patnaik, A.K. Ganguli, and Z. Anorg, Allg. Chem. 640, 1159 (2014).CrossRefGoogle Scholar
  37. 37.
    K.E. Ingle, K.R. Priolkar, P.A. Bhobe, and A.K. Nigam, Mater. Res. Express 3, 126001 (2016).CrossRefGoogle Scholar
  38. 38.
    K. Onar, B. Ozçelik, N.K. Güler, H. Okazaki, H. Takeya, Y. Takano, and M.E. Yakinci, J. Alloys Cmpd. 683, 164 (2016).CrossRefGoogle Scholar
  39. 39.
    K.W. Yeh, T.W. Huang, Y.L. Huang, T.K. Chen, F.C. Hsu, P.M. Wu, Y.C. Lee, Y.Y. Chu, C.L. Chen, J.Y. Luo, D.C. Yan, and M.K. Wu, arXiv:0808.0474 (2008).
  40. 40.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, arXiv:0811.1123 (2008)
  41. 41.
    K.W. Yeh, H.C. Hsu, T.W. Huang, P.M. Wu, Y.L. Huang, T.K. Chen, J.Y. Luo, and M.K. Wu, J. Phys. Soc. Jpn. 77, 19 (2008).CrossRefGoogle Scholar
  42. 42.
    V.P.S. Awana, A. Pal, A. Vajpayee, M. Mudgel, H. Kishan, M. Husain, R. Zeng, S. Yu, Y.F. Guo, Y.G. Shi, K. Yamaura, and E.T. Muromachi, J. Appl. Phys. 107, 09E128 (2010).CrossRefGoogle Scholar
  43. 43.
    B.C. Sales, A.S. Sefat, M.A. McGuire, R.Y. Jin, D. Mandrus, and Y. Mozharivskyj, Phys. Rev. B 79, 094521 (2009).CrossRefGoogle Scholar
  44. 44.
    K.W. Yeh, C.T. Ke, T.W. Huang, T.K. Chen, Y.L. Huang, P.M. Wu, and M.K. Wu, Cryst. Growth Des. 9–11, 4847 (2009).CrossRefGoogle Scholar
  45. 45.
    N.R. Werthamer, E. Helfand, and P.C. Hohenberg, Phys. Rev. 147, 295 (1966).CrossRefGoogle Scholar
  46. 46.
    P. Dutta, S. Chattopadhyay, D. Das, S. Majumdar, and S. Chatterjee, Supercond. Sci. Technol. 28, 115004 (2015).CrossRefGoogle Scholar
  47. 47.
    K. Onar and M.E. Yakinci, J. Alloys Cmpd. 620, 210 (2015).CrossRefGoogle Scholar
  48. 48.
    T. Ozaki, H. Takeya, H. Okazaki, K. Deguchi, S. Demura, Y. Kawasaki, H. Hara, T. Watanabe, T. Yamaguchi, and Y. Takano, EPL 98, 27002 (2012).CrossRefGoogle Scholar
  49. 49.
    R. Shipra, H. Takeya, K. Hirata, and A. Sundaresan, Phys. C 470, 528 (2010).CrossRefGoogle Scholar
  50. 50.
    Q.P. Ding, S. Mohan, Y. Tsuchiya, T. Taen, Y. Nakajima, and T. Tamegai, Supercond. Sci. Technol. 25, 025003 (2012).CrossRefGoogle Scholar
  51. 51.
    M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang, T.K. Chen, S.M. Rao, B.H. Mok, C.L. Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu, and T.P. Perng, Phys. C 469, 340 (2009).CrossRefGoogle Scholar
  52. 52.
    A.K. Yadav, A.D. Thakur, and C.V. Tomy, Solid State Commun. 151, 557 (2011).CrossRefGoogle Scholar
  53. 53.
    A. Wittlin, P. Aleshkevych, H. Przybylinska, D.J. Gawryluk, P. Dłuzewski, M. Berkowski, R. Puzniak, M.U. Gutowska, and A. Wisniewski, Supercond. Sci. Technol. 25, 065019 (2012).CrossRefGoogle Scholar
  54. 54.
    C.P. Bean, Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
  55. 55.
    B. Ozkurt and M.E. Aytekin, J. Mater. Sci. Mater. El. 29, 3920 (2018).CrossRefGoogle Scholar
  56. 56.
    C.S. Yadav and P.L. Paulose, Solid State Commun. 151, 216 (2011).CrossRefGoogle Scholar
  57. 57.
    M. Gursul, A. Ekicibil, N.K. Guler, and B. Ozcelik, J. Supercond. Nov. Magn. 29, 1187 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Bilimsel ve Teknolojik Araştırma Merkezi (İBTAM), SEM/EDX Labİnönü ÜniversitesiMalatyaTurkey
  2. 2.Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümüİskenderun Teknik ÜniversitesiIskenderunTurkey
  3. 3.Mühendislik ve Doğa Bilimleri Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümüİskenderun Teknik ÜniversitesiIskenderunTurkey

Personalised recommendations