pp 1–12 | Cite as

Review of the Effect of Oxygen on Titanium and Deoxygenation Technologies for Recycling of Titanium Metal

  • Yang XiaEmail author
  • Jinlong Zhao
  • Qinghua TianEmail author
  • Xueyi GuoEmail author
Recycling Methods for Industrial Metals and Minerals


The high reactivity and poor machinability of titanium contribute to its high-cost fabrication, low material utilization rate, and large amount of titanium scrap production. Titanium scrap is mainly contaminated by oxygen and forms an oxygen-enriched layer on the surface of titanium. Oxygen has a deleterious effect on the ductility, toughness, and notch sensitivity of titanium but strengthens it. Traditionally, the contamination was removed by mechanical grinding and chemical acid cleaning. However, these processes generate substantial waste products and cause environmental problems. Deoxygenation is an alternative method for recycling of titanium and is critical when producing high-value powder products from the scrap. The typical deoxygenation technologies include thermochemical and electrolysis methods. This article mainly reviews the effect of oxygen on titanium and several deoxygenation technologies for recycling of titanium. The fundamental theory behind deoxygenation is included as well.



The authors gratefully acknowledge the financial support from the CSU Start-up Fund and the Hunan Natural Science Fund for Distinguished Young Scholars (2019JJ20031).


  1. 1.
    M. Qian, Int. J. Powder Metall. 46, 29 (2010).Google Scholar
  2. 2.
    Z.Z. Fang, J.D. Paramore, P. Sun, K.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev. 63, 407 (2018).CrossRefGoogle Scholar
  3. 3.
    F. Froes, H. Friedrich, J. Kiese, and D. Bergoint, JOM 56, 40 (2004).CrossRefGoogle Scholar
  4. 4.
    G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (Russell Township: ASM international, 1993).Google Scholar
  5. 5.
    G. Lütjering and J.C. Williams, Titanium (Berlin: Springer, 2007).Google Scholar
  6. 6.
    C.R. Dandekar, Y.C. Shin, and J. Barnes, Int. J. Mach. Tool. Manuf. 50, 174 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Shukla, R.M. Mahamood, E.T. Akinlabi, and S. Pityana, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace Ind. Mechatron. Manuf. Eng. 6, 2475 (2012).Google Scholar
  8. 8.
    O. Takeda and T.H. Okabe, JOM 71, 1981 (2018).CrossRefGoogle Scholar
  9. 9.
    N. Mohite, S. Biradar, J.S. Jha, S. Mishra, and A. Tewari, Development and removal of alpha-case layer from heat treated titanium alloys. ASME 2017 Gas Turbine India Conference: American Society of Mechanical Engineers; 2017. p. V002T10A11-VT10A11.Google Scholar
  10. 10.
    R. Gaddam, B. Sefer, R. Pederson, and M.L. Antti, Mater. Charact. 99, 166 (2015).CrossRefGoogle Scholar
  11. 11.
    S.Y. Sung, B.S. Han, and Y.J. Kim, Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications (Rijeka: Intech, 2012).Google Scholar
  12. 12.
    Oak Ridage National Laboratory, Aerospace Workshop Summary Report, US Department of Energy, 2010.Google Scholar
  13. 13.
    S. Seong, O. Younossi, and B.W. Goldsmith, Titanium: Industrial Base, Price Trends, and Technology Initiatives (Santa Monica: Rand Corporation, 2009).CrossRefGoogle Scholar
  14. 14.
    Z.Z. Fang and P. Sun, Key engineering materials, Vol. 15 (Stafa: Trans Tech Publ, 2012).Google Scholar
  15. 15.
    USGS Minerials Information: Titanium Statistics and Information 2018.Google Scholar
  16. 16.
    H. Bomberger and F. Froes, JOM 36, 39 (1984).CrossRefGoogle Scholar
  17. 17.
    B. Rotmann, C. Lochbichler, and B. Friedrich, challenges in titanium recycling-do we need a new specification for secondary alloys. Proceedings of EMC 2011.Google Scholar
  18. 18.
    Presentation by Golden Titanium. Recycling titanium, the role of the titanium scrap processor Titanium 2015, Octorber 4–7, Orlando, FL, USA.Google Scholar
  19. 19.
    T.H. Okabe and T. Ouchi, Recycling of critical metals (Cham: Springer International Publishing, 2019), p. 237.Google Scholar
  20. 20.
    ASTM International, Standard Specification for Titanium Sponge. ASTM B299, 2018.Google Scholar
  21. 21.
    ASTM International, Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate. ASTM B265, 2015.Google Scholar
  22. 22.
    ASTM International, Standard Specification for Titanium and Titanium Alloy Bars and Billets. ASTM B348, 2013.Google Scholar
  23. 23.
    C. Zheng, T. Ouchi, A. Iizuka, Y.K. Taninouchi, and T.H. Okabe, Metall. Mater. Trans. B 50, 622 (2019).CrossRefGoogle Scholar
  24. 24.
    P. Sun, Z.Z. Fang, Y. Xia, Y. Zhang, and C. Zhou, Powder Technol. 301, 331 (2016).CrossRefGoogle Scholar
  25. 25.
    X. Goso and A. Kale, J. South Afr. Inst. Min. Metall. 111, 203 (2011).Google Scholar
  26. 26.
    C.G. McCracken, C. Motchenbacher, and D.P. Barbis, Int. J. Powder Metall. 46, 19 (2010).Google Scholar
  27. 27.
    M.S.R. Bolívar, B. Friedrich, and I.P. Metallurgy, Synthesis of titanium via magnesiothermic re-duction of TiO2 (Pigment). Proceedings of EMC2009. p. 1.Google Scholar
  28. 28.
    E. Akman and E. Cerkezoglu, Opt. Lasers Eng. 84, 37 (2016).CrossRefGoogle Scholar
  29. 29.
    A.J. Antończak, B. Stępak, P.E. Kozioł, and K.M. Abramski, Appl. Phys. A 115, 1003 (2014).CrossRefGoogle Scholar
  30. 30.
    A.P. Del Pino, P. Serra, and J. Morenza, Thin Solid Films 415, 201 (2002).CrossRefGoogle Scholar
  31. 31.
    M.V. Diamanti, B. Del Curto, and M. Pedeferri, Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 33, 221 (2008).Google Scholar
  32. 32.
    A. Kahveci and G. Welsch, Scr. Metall. 20, 1287 (1986).CrossRefGoogle Scholar
  33. 33.
    Z. Liu and G. Welsch, Metall. Trans. A 19, 527 (1988).CrossRefGoogle Scholar
  34. 34.
    A.K. Swarnakar, O. Van der Biest, and B. Baufeld, J. Mater. Sci. 46, 3802 (2011).CrossRefGoogle Scholar
  35. 35.
    H. Ogden and R. Jaffee, The Effects of Carbon, Oxygen, and Nitrogen on the Mechanical Properties of Titanium and Titanium Alloys (Columbus: Battelle Memorial Inst. Titanium Metallurgical Lab, 1955).CrossRefGoogle Scholar
  36. 36.
    M. Yan, W. Xu, M. Dargusch, H. Tang, M. Brandt, and M. Qian, Powder Metall. 57, 251 (2014).CrossRefGoogle Scholar
  37. 37.
    A.T. Sidambe, F. Derguti, and I. Todd, Key Eng. Mater. 520, 145 (2012).CrossRefGoogle Scholar
  38. 38.
    T. Ebel, Metal injection molding (MIM) of titanium and titanium alloys, Handbook of metal injection molding (Amsterdam: Elsevier, 2012), p. 415.CrossRefGoogle Scholar
  39. 39.
    T. Ebel, V. Friederici, P. Imgrund, and T. Hartwig, Metal injection molding of titanium, Titanium powder metallurgy (Amsterdam: Elsevier, 2015), p. 337.CrossRefGoogle Scholar
  40. 40.
    T. Mckinley, J. Electrochem. Soc. 103, 561 (1956).CrossRefGoogle Scholar
  41. 41.
    W.L. Finlay and J.A. Snyder, JOM 2, 277 (1950).CrossRefGoogle Scholar
  42. 42.
    B. Barkia, V. Doquet, J.P. Couzinié, and I. Guillot, Mater. Sci. Eng. A 624, 79 (2015).CrossRefGoogle Scholar
  43. 43.
    C. Baptista, M. Barboza, A. Adib, M. Andrade, C. Otani, and D. Reis, Mater. Des. 30, 1503 (2009).CrossRefGoogle Scholar
  44. 44.
    Y. Xia, Z.Z. Fang, D. Fan, P. Sun, Y. Zhang, and J. Zhu, Int. J. Hydrog. Energy 43, 11939 (2018).CrossRefGoogle Scholar
  45. 45.
    M. Song, S. Han, D. Min, G. Choi, and J. Park, Scr. Mater. 59, 623 (2008).CrossRefGoogle Scholar
  46. 46.
    M.H. Song, S.M. Han, G.S. Choi, D.J. Min, and J.H. Park, Metall. Mater. Trans. A 40, 495 (2009).CrossRefGoogle Scholar
  47. 47.
    A.D. Mah, Thermodynamic properties of titanium-oxygen solutions and compounds. Report of Investigations 1957.Google Scholar
  48. 48.
    T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Mater. Trans. 32, 485 (1991).CrossRefGoogle Scholar
  49. 49.
    T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Tetsu-to-Hagané 77, 93 (1991).CrossRefGoogle Scholar
  50. 50.
    K. Ono and R.O. Suzuki, JOM 54, 59 (2002).CrossRefGoogle Scholar
  51. 51.
    R.O. Suzuki, M. Aizawa, and K. Ono, J. Alloys Compd. 288, 173 (1999).CrossRefGoogle Scholar
  52. 52.
    Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, and C. Zhou, J. Amer. Chem. Soc. 138, 6916 (2016).CrossRefGoogle Scholar
  53. 53.
    R.L. Fisher, US patent 4923531, 1990.Google Scholar
  54. 54.
    R.L. Fisher, US patent 5522935,1991.Google Scholar
  55. 55.
    C. McCracken, J. Robison, and C. Motchenbacher, Manufacture of HDH low oxygen titanium-6aluminium-4vanadium (Ti-6-4) powder incorporating a novel powder de-oxidation step. The European Powder Metallurgy Association: Shrewsbury, UK 2009:7146-7152.Google Scholar
  56. 56.
    T. Yagura and K. Ono, Mater. Trans. 42, 2492 (2001).CrossRefGoogle Scholar
  57. 57.
    T. Okabe, T. Oishi, and K. Ono, Metall. Trans. B 23, 583 (1992).CrossRefGoogle Scholar
  58. 58.
    C.I. Hong and J.W. Lim, Korean J. Met. Mater. 56, 205 (2018).Google Scholar
  59. 59.
    C.I. Hong, J.M. Oh, J. Park, J.M. Yoon, and J.W. Lim, Adv. Powder Technol. 29, 1640 (2018).CrossRefGoogle Scholar
  60. 60.
    S.J. Kim, J.M. Oh, and J.W. Lim, Met. Mater. Inter. 22, 658 (2016).CrossRefGoogle Scholar
  61. 61.
    T. Kim, K. Kim, J.M. Oh, J. Park, and J.W. Lim, Mater. Sci. Technol. 35, 702 (2019).CrossRefGoogle Scholar
  62. 62.
    J.M. Oh, I.H. Choi, C.Y. Suh, H. Kwon, J.W. Lim, and K.M. Roh, Met. Mater. Int. 22, 488 (2016).CrossRefGoogle Scholar
  63. 63.
    J.M. Oh, C.I. Hong, and J.W. Lim, Adv. Powder Technol. 30, 1 (2019).CrossRefGoogle Scholar
  64. 64.
    J.M. Oh, H. Kwon, W. Kim, and J.W. Lim, Thin Solid Films 551, 98 (2014).CrossRefGoogle Scholar
  65. 65.
    J.M. Oh, C.Y. Suh, H. Kwon, J.W. Lim, and K.-M. Roh, J. Korean Inst. Resour. Recyel. 24, 21 (2015).Google Scholar
  66. 66.
    J. W. Lim, J. M. Oh, L. Back Kyu, C. Y. Suh, and S. W. Cho, US patent 8449813, 2013.Google Scholar
  67. 67.
    K.M. Roh, C.Y. Suh, J.M. Oh, W. Kim, H. Kwon, and J.W. Lim, Powder Technol. 253, 266 (2014).CrossRefGoogle Scholar
  68. 68.
    Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free, J. Mater. Sci. 52, 4120 (2017).CrossRefGoogle Scholar
  69. 69.
    Y. Xia, Z.Z. Fang, T. Zhang, Y. Zhang, P. Sun, and Z. Huang, Proceedings of the 13th world conference on titanium, Wiley Online Library, 2016, p. 135.Google Scholar
  70. 70.
    Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free, and J. Guo, Chem. Eng. J. 286, 517 (2016).CrossRefGoogle Scholar
  71. 71.
    Z.Z. Fang, P. Sun, Y. Xia, and Y. Zhang, Molten salt de-oxygenation of metal powders. US Patent App. 15/314,464, 2017.Google Scholar
  72. 72.
    H. Lefler, Z.Z. Fang, Y. Zhang, P. Sun, and Y. Xia, Metall. Mater. Trans. B 49, 2998 (2018).CrossRefGoogle Scholar
  73. 73.
    Q. Li, X. Zhu, Y. Zhang, Z.Z. Fang, S. Zheng, P. Sun, Y. Xia, P. Li, Y. Zhang, and X. Zou, Chem. Eng. Sci. 195, 484 (2019).CrossRefGoogle Scholar
  74. 74.
    Y. Xia, Z.Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and Z. Huang, Mater. Trans. 58, 355 (2017).CrossRefGoogle Scholar
  75. 75.
    Y. Zhang, Z.Z. Fang, P. Sun, Y. Xia, M. Free, Z. Huang, H. Lefler, T. Zhang, and J. Guo, Chem. Eng. J. 327, 169 (2017).CrossRefGoogle Scholar
  76. 76.
    Y. Zhang, Z.Z. Fang, P. Sun, Y. Xia, and C. Zhou, US Patent 9669464, 2017.Google Scholar
  77. 77.
    Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B. Van Devener, M. Free, H. Lefler, and S. Zheng, Chem. Eng. J. 308, 299 (2017).CrossRefGoogle Scholar
  78. 78.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Metall. Mater. Trans. B 32, 1041 (2001).CrossRefGoogle Scholar
  79. 79.
    T. Okabe, M. Nakamura, T. Oishi, and K. Ono, Metall. Mater. Trans. B 24, 449 (1993).CrossRefGoogle Scholar
  80. 80.
    K. Hirota, T. Okabe, F. Saito, Y. Waseda, and K. Jacob, J. Alloys Compd. 282, 101 (1999).CrossRefGoogle Scholar
  81. 81.
    M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono, Proceedings of International Symposium on Molten Salt Chemistry and Technology, 1993, p. 529.Google Scholar
  82. 82.
    Y.K. Taninouchi, Y. Hamanaka, and T.H. Okabe, Metall. Mater. Trans. B 47, 3394 (2016).CrossRefGoogle Scholar
  83. 83.
    T. Okabe, Y. Hamanaka, and Y. Taninouchi, Faraday Discuss. 190, 109 (2016).CrossRefGoogle Scholar
  84. 84.
    J.D. Corbett, J.D. Smith, and E. Garcia, J. Less Common Met. 115, 343 (1986).CrossRefGoogle Scholar
  85. 85.
    H. Sano, M. Tashiro, T. Fujisawa, and C Yamauchi, Proc Fall Meeting of MMIJ (Mining Mater Process Inst Japan), Sapporo, Japan 99 (1997).Google Scholar
  86. 86.
    H. Sano, M. Tashiro, T. Fujisawa, and C. Yamauchi, Mater. Trans. 40, 263 (1999).CrossRefGoogle Scholar
  87. 87.
    T.H. Okabe, C. Zheng, and Y.-K. Taninouchi, Metall. Mater. Trans. B 49, 1056 (2018).CrossRefGoogle Scholar
  88. 88.
    M. Qian, Y. Yang, M. Yan, and S.D. Luo, Key Engineering Materials, Vol. 24 (Stafa: Trans Tech Publ, 2012).Google Scholar
  89. 89.
    M. Yan, Y. Liu, Y. Liu, C. Kong, G. Schaffer, and M. Qian, Scripta Mater. 67, 491 (2012).CrossRefGoogle Scholar
  90. 90.
    M. Yan, H. Tang, and M. Qian, Scavenging of oxygen and chlorine from powder metallurgy (PM) titanium and titanium alloys, Titanium powder metallurgy (Amsterdam: Elsevier, 2015), p. 253.Google Scholar
  91. 91.
    Y. Yang, S. Luo, and M. Qian, Mater. Sci. Eng. A 618, 447 (2014).CrossRefGoogle Scholar
  92. 92.
    T. Yahata, T. Ikeda, and M. Maeda, Metall. Trans. B 24, 599 (1993).CrossRefGoogle Scholar
  93. 93.
    Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu, Int. J. Hydrog. Energy 34, 8958 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations