pp 1–8 | Cite as

Recycling Utilization of Zinc-Bearing Metallurgical Dust by Reductive Sintering: Reaction Behavior of Zinc Oxide

  • Wei Lv
  • Min GanEmail author
  • Xiaohui Fan
  • Zhiyun Ji
  • Xuling Chen
  • Jiawen Yao
  • Tao Jiang
Recycling Methods for Industrial Metals and Minerals


A process is being developed to recycle zinc-bearing metallurgical dust by reductive sintering. In the present work, the reaction behavior of zinc and iron oxides was studied in different conditions in CO–CO2 atmosphere, to understand the processes involved and determine the optimal conditions. The results showed that dezincification started to become significant when the coke addition was 9.0 wt.% of the amount of raw material, the corresponding CO content in the gases being 20 vol.%. Iron oxide played an important role in the reduction of ZnO: when the CO content was less than 20 vol.%, ZnO and Fe3O4 reacted to generate ZnFe2O4, CO2 being the oxidizer that promoted the conversion of Fe2+ to Fe3+. Increasing the temperature was also conducive to the generation of ZnFe2O4. The effect of iron oxide on the ZnO reduction gradually weakened when the CO content was increased above 20 vol.%. To realize reduction of ZnO and increase the removal rate of zinc, the atmosphere and temperature should be controlled in the thermodynamic stability region of FeO and Zn, where zinc vaporizes and is removed in elemental form.



The research was financially supported by the National Natural Science Foundation of China (Nos. U1760107, U1660206), Hunan Provincial Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, and Hunan Provincial Innovation Foundation for Postgraduate (CX2016B054).

Supplementary material

11837_2019_3645_MOESM1_ESM.pdf (275 kb)
Supplementary material 1 (PDF 274 kb)


  1. 1.
    Z. Xie, Y. Guo, T. Jiang, F. Chen, and L. Yang, 8th International Symposium on High-Temperature Metallurgical Processing (Springer, 2017), pp. 485–493.Google Scholar
  2. 2.
    Z. Peng, D. Gregurek, C. Wenzl, and J.F. White, JOM 68, 2313–2315 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Han, W. Liu, W. Qin, F. Jiao, D. Wang, and C. Liang, JOM 68, 1–8 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Wang, Y. Guo, L. Yang, G. Fu, F. Zheng, F. Chen, L. Yang, and T. Jiang, Powder Technol. 332, 188–196 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Lanzerstorfer, B. Bamberger-Strassmayr, and K. Pilz, ISIJ Int. 55, 758–764 (2015).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Z. Su, Y. Zhou, G. Li, and T. Jiang, Int. J. Miner. Process. 124, 15–19 (2013).CrossRefGoogle Scholar
  7. 7.
    E.G. Donskov, V.P. Lyalyuk, and A.D. Donskov, Steel Transl. 44, 209–214 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Antrekowitsch, G. Graller-Kettler, B. Matl, and A. Pestalozzi, JOM 57, 43–46 (2005).CrossRefGoogle Scholar
  9. 9.
    X. Yang, M. Chu, F. Shen, and Z. Zhang, Acta Metall. Sin. (Engl. Lett.), 22, 454-460 (2009).Google Scholar
  10. 10.
    L. Xia, R. Mao, J. Zhang, X. Xu, M. Wei, and F. Yang, Int. J. Miner. Met. Mater 22, 122–131 (2015).CrossRefGoogle Scholar
  11. 11.
    T. Havlík, B.E.S. Vidor, A.M. Bernardes, I.A. Schneider, and A. Miskufová, J. Hazard. Mater. 135, 311–318 (2006).CrossRefGoogle Scholar
  12. 12.
    J. Han, W. Liu, D. Wang, F. Jiao, T. Zhang, and W. Qin, Metall. Trans. B 47, 2400–2410 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Dimitrov and I. Bonev, Thermochim. Acta 106, 9–25 (1986).CrossRefGoogle Scholar
  14. 14.
    J. Han, W. Liu, W. Qin, B. Peng, K. Yang, and Y. Zheng, J. Ind. Eng. Chem. 22, 272–279 (2015).CrossRefGoogle Scholar
  15. 15.
    Z. Su, Y. Zhang, B. Liu, M. Lu, G. Li, and T. Jiang, JOM 69, 2364–2372 (2017).CrossRefGoogle Scholar
  16. 16.
    B. Peng, N. Peng, X. Min, H. Liu, Y. Li, D. Chen, and K. Xue, JOM 67, 1988–1996 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Han, W. Liu, W. Qin, F. Jiao, and D. Wang, 7th International Symposium on High-Temperature Metallurgical Processing (Springer, 2016), pp. 543–550.Google Scholar
  18. 18.
    G. Li, Z. You, Y. Zhang, M. Rao, P. Wen, Y. Guo, and T. Jiang, JOM 66, 1701–1710 (2014).CrossRefGoogle Scholar
  19. 19.
    T. Chun and D. Zhu, Metall. Trans. B 46, 1–4 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Gan, Z. Ji, X. Fan, X. Chen, Y. Zhou, G. Wang, Y. Tian, and T. Jiang, J. Hazard. Mater. 353, 381–392 (2018).CrossRefGoogle Scholar
  21. 21.
    M. Nakano, T. Okada, H. Hasegawa, and M. Sakakibara, ISIJ Int. 40, 238–243 (2017).CrossRefGoogle Scholar
  22. 22.
    Y. Mochizuki, N. Tsubouchi, and T. Akiyama, Fuel Process. Technol. 138, 704–713 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Yabe and Y. Takamoto, ISIJ Int. 53, 1625–1632 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Gan, X. Fan, W. Lv, X. Chen, Z. Ji, T. Jiang, Z. Yu, and Y. Zhou, Powder Technol. 301, 478–485 (2016).CrossRefGoogle Scholar
  25. 25.
    J. Fu, T. Jiang, and D. Zhu, Sintering and Pelletizing, 1st ed. (Changsha: Central South University Press, 1996), pp. 33–35. (in Chinese).Google Scholar
  26. 26.
    ISO 9035: 1989, Iron ores, determination of acid-soluble iron (II) content; titrimetric method.Google Scholar
  27. 27.
    ISO 2597: 1: 2006, Iron ores, determination of total iron content-titrimetric method after tin (II) chloride reduction.Google Scholar
  28. 28.
    T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441–2449 (2008).CrossRefGoogle Scholar
  29. 29.
    Z. Wang, B. Peng, L. Zhang, Z. Zhao, D. Liu, N. Peng, D. Wang, Y. He, Y. Liang, and H. Liu, JOM 70, 539–546 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations