Advertisement

JOM

pp 1–7 | Cite as

Nitrogen Incorporation Induced Soft-to-Hard Transition Observed in the Mechanical Properties of Amorphous Niobium Oxide Films

  • C. Orozco
  • O. R. Nunez
  • N. R. Murphy
  • J. G. Jones
  • C. V. RamanaEmail author
Properties of Interfaced Materials and Films

Abstract

The article covers the nitrogen incorporation induced transformation of mechanical behavior of the amorphous Nb-oxide films. Niobium oxynitride (Nb-O-N) films were sputter-deposited using a metallic Nb target in the presence of oxygen and nitrogen. The nitrogen concentration in the Nb-O-N films was varied by adjusting the nitrogen gas flow rate from 0 sccm to 10 sccm while keeping total gas flow (nitrogen + oxygen + argon) constant at 30 sccm. The surface and interface chemical characterization of the samples indicate that, with increasing the nitrogen content, the corresponding mechanical characteristics, namely, hardness (H) and elastic modulus (E), increase from ~ 5 GPa to 15 GPa and 115 GPa to 135 GPa, respectively. The trend observed in H and E values correlates with Nb-O and Nb-N bond formation in Nb-O-N as evidenced in chemical analyses made using x-ray photoelectron spectroscopy. The chemical composition measurements indicate that nitrogen incorporation proceeds with a decrease in relative oxygen content in Nb-O-N films, where the ability to withstand mechanical deformation is enhanced. A correlation between the processing conditions, nitrogen content, and physical/mechanical properties in Nb-O-N films is established.

Notes

Acknowledgement

The authors acknowledge, with pleasure, support from the National Science Foundation (NSF) with NSF-PREM Grant #DMR-1827745.

References

  1. 1.
    Z. Dai, H. Dai, Y. Zhou, D. Liu, G. Duan, W. Cai, and Y. Li, Adv. Mater. Interf. 2, 1500167 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Serenyi, T. Lohner, P. Petrik, Z. Zolnai, Z.E. Horvath, and N.Q. Khanh, Thin Solid Films 516, 8096 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Wei, X. Li, H. Xue, J. Shao, R. Zhu, and H. Pang, Adv. Mater. Interf. 9, 1701509 (2018).CrossRefGoogle Scholar
  4. 4.
    M.E. Gimon-Kinsel and K.J. Balkus, Microporous Mesoporous Mater. 28, 113 (1999).CrossRefGoogle Scholar
  5. 5.
    J. Xia, N. Masaki, K. Jiang, and S. Yanagida, J. Photochem. Photobiol. A Chem. 188, 120 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Mazur, M. Szymanska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, Appl. Surf. Sci. 301, 63 (2014).CrossRefGoogle Scholar
  7. 7.
    T. Maruyama and S. Arai, Appl. Phys. Lett. 63, 869 (1993).CrossRefGoogle Scholar
  8. 8.
    N. Ozer, M.D. Rubin, and C.M. Lampert, Sol. Energy Mater. Sol. Cells 40, 285 (1996).CrossRefGoogle Scholar
  9. 9.
    K. Yoshimura, T. Miki, S. Iwama, and S. Tanemura, Thin Solid Films 281–282, 235 (1996).CrossRefGoogle Scholar
  10. 10.
    E. Pehlivan, F.Z. Tepehan, and G.G. Tepehan, Sol. Energy Mater. Sol. Cells 87, 317 (2005).CrossRefGoogle Scholar
  11. 11.
    K.S. Havey, J.S. Zabinski, and S.D. Walck, Thin Solid Films 303, 238 (1997).CrossRefGoogle Scholar
  12. 12.
    M. Fenker, M. Balzer, R. Büchi, H. Jehn, H. Kappl, and J.-J. Lee, Surf. Coat. Technol. 163–164, 169 (2003).CrossRefGoogle Scholar
  13. 13.
    J.P. Manaud, A. Poulon, S. Gomez, and Y. Le Petitcorps, Surf. Coat. Technol. 202, 222 (2007).CrossRefGoogle Scholar
  14. 14.
    J.J. Olaya, L. Huerta, S.E. Rodil, and R. Escamilla, Thin Solid Films 516, 8768 (2008).CrossRefGoogle Scholar
  15. 15.
    R.P. Frankenthal, J. Electrochem. Soc. 130, 2056 (1983).CrossRefGoogle Scholar
  16. 16.
    P.K. Gallagher, J. Electrochem. Soc. 130, 2054 (1983).CrossRefGoogle Scholar
  17. 17.
    J. Probst, U. Gbureck, and R. Thull, Surf. Coat. Technol. 148, 226 (2001).CrossRefGoogle Scholar
  18. 18.
    V.A. Matylitskaya, W. Bock, K. Thoma, and B.O. Kolbesen, Appl. Surf. Sci. 252, 205 (2005).CrossRefGoogle Scholar
  19. 19.
    D. Bekermann, D. Barreca, A. Gasparotto, H.W. Becker, R.A. Fischer, and A. Devi, Surf. Coat. Technol. 204, 404 (2009).CrossRefGoogle Scholar
  20. 20.
    F.V. Richard, F.S. Hickernell, F.Y. Cho, 4701008 (1987).Google Scholar
  21. 21.
    V. Schwartz and S.T. Oyama, Chem. Mater. 9, 3052 (1997).CrossRefGoogle Scholar
  22. 22.
    R. Brayner and G. Djéga-Mariadassou, Catal. Today 57, 225 (2007).CrossRefGoogle Scholar
  23. 23.
    T. Savisalo, D.B. Lewis, and P.E. Hovsepian, Surf. Coat. Technol. 200, 2731 (2006).CrossRefGoogle Scholar
  24. 24.
    M. Fenker, H. Kappl, K. Petrikowski, and R. Bretzler, Surf. Coat. Technol. 200, 1356 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Fenker, H. Kappl, P. Carvalho, and F. Vaz, Thin Solid Films 519, 2457 (2011).CrossRefGoogle Scholar
  26. 26.
    M. Fenker, M. Balzer, and H. Kappl, Thin Solid Films 515, 27 (2006).CrossRefGoogle Scholar
  27. 27.
    M. Fenker, H. Kappl, and C.S. Sandu, Surf. Coat. Technol. 202, 2358 (2008).CrossRefGoogle Scholar
  28. 28.
    J.M. Chappe, P. Carvalho, S. Lanceros-Mendez, M.I. Vasilevskiy, F. Vaz, A.V. Machado, M. Fenker, H. Kappl, N.M.G. Parreira, A. Cavaleiro, and E. Alves, Surf. Coat. Technol. 202, 2363 (2008).CrossRefGoogle Scholar
  29. 29.
    J.M. Chappe, P. Carvalho, A.V. Machado, F. Vaz, E. Alves, N.P. Barradas, M. Fenker, and H. Kappl, Phys. Res. Sect. B 266, 4927 (2008).Google Scholar
  30. 30.
    M. Fenker, H. Kappl, O. Banakh, N. Martin, and J.F. Pierson, Surf. Coat. Technol. 201, 4152 (2006).CrossRefGoogle Scholar
  31. 31.
    N.R. Murphy, A.J. Moreno-Tarango, C.V. Ramana, L. Sun, J.G. Jones, and J.T. Grant, J. Alloys Compd. 681, 350 (2016).CrossRefGoogle Scholar
  32. 32.
    N. Fairley, Casa Software Ltd., 1999–2011.Google Scholar
  33. 33.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  34. 34.
    G. Martinez and C.V. Ramana, Adv. Eng. Mater. 19, 1700354 (2017).CrossRefGoogle Scholar
  35. 35.
    A.K. Battu, S. Manandhar, and C.V. Ramana, Adv. Mater. Interf. 4, 1700378 (2017).CrossRefGoogle Scholar
  36. 36.
    S.H. Mohamed and A. Anders, Surf. Coat. Technol. 201, 2977 (2006).CrossRefGoogle Scholar
  37. 37.
    M. Vargas, D.M. Lopez, N.R. Murphy, J.T. Grant, and C.V. Ramana, Appl. Surf. Sci. 353, 728 (2015).CrossRefGoogle Scholar
  38. 38.
    O.R. Nunez, A.J. Moreno Tarango, N.R. Murphy, and C.V. Ramana, J. Alloys Compd. 683, 292 (2016).CrossRefGoogle Scholar
  39. 39.
    P. Dubey, G.A. Lopez, G. Martinez, and C.V. Ramana, J. Appl. Phys. 120, 245103 (2016).CrossRefGoogle Scholar
  40. 40.
    R. Ohnishi, M. Katayama, K. Takanabe, J. Kubota, and K. Domen, Electrochim. Acta 55, 5393 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. Orozco
    • 1
  • O. R. Nunez
    • 1
  • N. R. Murphy
    • 2
  • J. G. Jones
    • 2
  • C. V. Ramana
    • 1
    Email author
  1. 1.Center for Advanced Materials Research (CMR)University of Texas at El PasoEl PasoUSA
  2. 2.Materials and Manufacturing Directorate (RX)Wright-Patterson Air Force Base (WPAFB)DaytonUSA

Personalised recommendations