Advertisement

JOM

pp 1–8 | Cite as

An Efficient and Sustainable Approach for Preparing Silicon Fertilizer by Using Crystalline Silica from Ore

  • Bing Rao
  • Likun GaoEmail author
  • Huixin Dai
  • Zhi Hong
  • Haiyun Xie
Sustainable Pyrometallurgical Processing

Abstract

Silicon fertilizer has been prepared by converting crystalline silica from ore into plant-available silicon using a roasting method. The results of roasting experiments showed that adding limestone as an additive ingredient and sodium hydroxide as a roasting fluxing agent significantly increased the conversion rate of plant-available silicon. Both the roasting temperature and fluxing agent are key factors in the production process of silicon fertilizer. The roasting mechanism was studied by thermogravimetry-differential scanning calorimetry (TG-DSC) and x-ray diffraction (XRD) analysis. The TG-DSC results indicated that, in the presence of the fluxing reagent, the decomposition temperature for limestone and the initial reaction temperature for the conversion were reduced by 22.1°C and 33.2°C, respectively. These results also revealed that plant-available silicon conversion is an endothermic reaction without flux but an exothermic reaction with flux. The XRD results showed that the effective components of the silicon fertilizer were CaSiO3, Ca2SiO4, and Ca3SiO5.

Notes

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (No. 51764023) and the National Natural Science Foundation of China (No. 51464030) for financial support.

References

  1. 1.
    Y. Guo, Z. Zhao, and F. Cheng, Hydrometallurgy 169, 4189 (2017).  https://doi.org/10.1016/j.hydromet.2017.02.021.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Y. Liang, J. Integr. Agric. 17, 2137 (2018).  https://doi.org/10.1016/S2095-3119(18)62081-7.CrossRefGoogle Scholar
  4. 4.
    Richard J. Haynes, Adv. Agron. 146, 83 (2017).  https://doi.org/10.1016/bs.agron.2017.06.001.CrossRefGoogle Scholar
  5. 5.
    M. Zhang, Y. Liang, and G. Chu, Sci. Hortic. 225, 757 (2017).  https://doi.org/10.1016/j.scienta.2017.08.019.CrossRefGoogle Scholar
  6. 6.
    T. Klotzbücher, A. Marxen, D. Vetterlein, J. Schneiker, M. Türke, N. Van Sinh, N. HungManh, H. Chien, L. Marquez, S. Villareal, J. Victor Bustamante, and R. Jahn, Basic Appl. Ecol. 16, 665 (2015).  https://doi.org/10.1016/j.baae.2014.08.002.CrossRefGoogle Scholar
  7. 7.
  8. 8.
    J. Ma and N. Yamaji, Trends Plant Sci. 20, 435 (2015).  https://doi.org/10.1016/j.tplants.2015.04.007.CrossRefGoogle Scholar
  9. 9.
    K.A. Wijaya and K. Anom, Agric. Agric. Sci. Proc. 9, 158 (2016).  https://doi.org/10.1016/j.aaspro.2016.02.111.Google Scholar
  10. 10.
    H. Marschner, J. Ecol. 76, 1250 (1995).  https://doi.org/10.1016/B978-012473542-2/50019-5.Google Scholar
  11. 11.
    Z. Jarosz, J. Elementol. 18, 403 (2013).  https://doi.org/10.5601/jelem.2013.18.3.05.Google Scholar
  12. 12.
    H. Liu, J. Li, G. Zheng, Q. Du, T. Pan, and Y. Chang, Acta Agric. Boreali-Occident. Sin. 23, 8 (2014).  https://doi.org/10.7606/j.issn.1004-1389.2014.08.019.Google Scholar
  13. 13.
    S. Dehghani, C. Ghobadi, B. Baninasab, M. Gheysari, and S. Shirani Bidabadi, J. Plant Nutr. 39, 502 (2015).  https://doi.org/10.1080/01904167.2015.1086789.CrossRefGoogle Scholar
  14. 14.
    N.K. Savant, L.E. Datnoff, and G.H. Snyder, Commun. Soil Sci. Plant Anal. 28, 1245 (2008).  https://doi.org/10.1080/00103629709369870.CrossRefGoogle Scholar
  15. 15.
    S.A. Abro, R. Qureshi, F.M. Soomro, A.A. Mirbahar, and G.S. Jakhar, Pak. J. Bot. 41, 1385 (2009).  https://doi.org/10.3417/2007082.Google Scholar
  16. 16.
    C.X. Xu, Y.P. Ma, and Y.L. Liu, S. Afr. J. Bot. 98, 26 (2015).  https://doi.org/10.1016/j.sajb.2015.01.008.CrossRefGoogle Scholar
  17. 17.
    F.J. Ma, Soil Sci. Plant Nutr. 50, 11 (2004).  https://doi.org/10.1080/00380768.2004.10408447.CrossRefGoogle Scholar
  18. 18.
    Y. Liang, W. Sun, Y.G. Zhu, and P. Christie, Environ. Pollut. 147, 422 (2007).  https://doi.org/10.1016/j.envpol.2006.06.008.CrossRefGoogle Scholar
  19. 19.
    C. Keller, M. Rizwan, J.C. Davidian, O. Pokrovsky, N. Bovet, P. Chaurand, and J.D. Meunier, Planta 241, 847 (2015).  https://doi.org/10.1007/s00425-014-2220-1.CrossRefGoogle Scholar
  20. 20.
    Y. Liang, M. Nikolic, R. Bélanger, H. Gong, and A. Song, Silicon in Agriculture (Amsterdam: Springer, 2015).CrossRefGoogle Scholar
  21. 21.
    J. Ma, H. Cai, C. He, W. Zhang, and L. Wang, N. Phytol. 206, 1063 (2015).  https://doi.org/10.1111/nph.13276.CrossRefGoogle Scholar
  22. 22.
    J.W. Wu, S. Yu, Y.X. Zhu, Y.C. Wang, and H.J. Gong, Pedosphere 23, 815 (2013).  https://doi.org/10.1016/S1002-0160(13)60073-9.CrossRefGoogle Scholar
  23. 23.
    M. Adrees, S. Ali, M. Rizwan, M. Zia-ur-Rehman, M. Ibrahim, F. Abbas, M. Farid, M.F. Qayyum, and M.K. Irshad, Ecotoxicol. Environ. Saf. 119, 186 (2015).  https://doi.org/10.1016/j.ecoenv.2015.05.011.CrossRefGoogle Scholar
  24. 24.
    F. Guntzer, C. Keller, and J.D. Meunier, Agron. Sustain. Dev. 32, 201 (2012).  https://doi.org/10.1007/s13593-011-0039-8.CrossRefGoogle Scholar
  25. 25.
    M. Wang, J.J. Wang, and X. Wang, Geoderma 321, 22 (2018).  https://doi.org/10.1016/j.geoderma.2018.02.001.CrossRefGoogle Scholar
  26. 26.
    E. Epstein, Proc. Natl. Acad. Sci. USA 91, 11 (1994).  https://doi.org/10.2307/2363729.CrossRefGoogle Scholar
  27. 27.
    J.T. Cornelis and B. Delvaux, Funct. Ecol. 30, 1111 (2016).  https://doi.org/10.1111/1365-2435.12704.CrossRefGoogle Scholar
  28. 28.
    E. Struyf, A. Smis, S. Van Demme, J. Garnier, G. Govers, B. Van Wesemael, D.J. Conley, O. Batelann, E. Frot, W. Clymans, F. Vandevenne, C. Lancelot, P. Goos, and P. Meire, Nat. Commun. 1, 129 (2010).  https://doi.org/10.1038/ncomms1128.CrossRefGoogle Scholar
  29. 29.
    F. Vandevenne, E. Struyf, W. Clymans, and P. Meire, Front. Ecol. Environ. 10, 243 (2012).  https://doi.org/10.1890/110046.CrossRefGoogle Scholar
  30. 30.
    T. Klotzbücher, A. Klotzbücher, K. Klaus, M. Ines, and M. Robert, Geoderma 331, 15 (2018).  https://doi.org/10.1016/j.geoderma.2018.06.011.CrossRefGoogle Scholar
  31. 31.
    A. Song, D. Ning, F. Fan, Z. Li, M. Provancebowley, and Y. Liang, Sci. Rep. 5, 17354 (2015).  https://doi.org/10.1038/srep17354.CrossRefGoogle Scholar
  32. 32.
    P. Hu, Y. Zhang, Y. Zhou, X. Ma, and P.K. Chu, Environ. Prog. Sustain. Energy 1, 1 (2017).  https://doi.org/10.1002/ep.12776.Google Scholar
  33. 33.
    K. Thiagalingam, J.A. Silva, and R.L. Fox, Conference on Chemistry and Fertility of Tropical Soils 149 (1977)Google Scholar
  34. 34.
    D.L. Cai, Silicon Fertilizer and Its Application Technology (Beijing: Taihai Publishing House, 2001) (In Chinese).Google Scholar
  35. 35.
    R.J. Haynes, O.N. Belyaeva, and G. Kingston, J. Plant Nutr. Soil Sci. 176, 238 (2013).  https://doi.org/10.1002/jpln.201200372.CrossRefGoogle Scholar
  36. 36.
    K. Ito, K. Endoh, Y. Shiratori, and K. Inubushi, Soil Sci. Plant Nutr. (Abingdon, UK) 61, 835 (2015).  https://doi.org/10.1080/00380768.2015.1064326.CrossRefGoogle Scholar
  37. 37.
    W. J. Duan, Study on preparation of silicon fertilizer using wollastonite (2015) (In Chinese)Google Scholar
  38. 38.
    M. Vaculík, T. Landberg, M. Greger, M. Luxová, M. Stoláriková, and A. Lux, Sci. Rep. 110, 433 (2012).  https://doi.org/10.1093/aob/mcs039.Google Scholar
  39. 39.
    L. Qian, B. Chen, and M. Chen, Sci. Rep. 6, 29346 (2016).  https://doi.org/10.1038/srep29346.CrossRefGoogle Scholar
  40. 40.
    S. Agarie, H. Uchida, W. Agata, F. Kubota, and P.B. Kaufman, Plant Prod. Sci. 1, 89 (1998).  https://doi.org/10.1626/pps.1.89.CrossRefGoogle Scholar
  41. 41.
    T. Hayasaka, H. Fujii, and K. Ishiguro, Phytopathology 98, 1038 (2008).  https://doi.org/10.1094/phyto-98-9-1038.CrossRefGoogle Scholar
  42. 42.
    F. Fauteux, W. Rémus-Borel, J.G. Menzies, and R.R. Bélanger, FEMS Microbiol. Lett. 249, 1 (2005).  https://doi.org/10.1016/j.femsle.2005.06.034.CrossRefGoogle Scholar
  43. 43.
    P.H. Seron, K.G. Henrique, V.A.D. Aquino, and C.M. de Sartori, Sci. Agric. 61, 522 (2004).  https://doi.org/10.1590/s0103-90162004000500010.CrossRefGoogle Scholar
  44. 44.
    G.G. Javier, C. Virgilio, R.V. Lorena, C.F. Elena, G.M. Rafael, and T. Laura, Ann. Acad. Bras. Cienc. 82, 267 (2010).  https://doi.org/10.1590/S0001-37652010000200003.CrossRefGoogle Scholar
  45. 45.
    J.F.P. Gomes and C.G. Pinto, Rev. Metal. 42, 409 (2006).  https://doi.org/10.3989/revmetalm.2006.v42.i6.39.CrossRefGoogle Scholar
  46. 46.
    J.M. Valverde and J. Manuel, Chem. Eng. Sci. 132, 169 (2015).  https://doi.org/10.1016/j.ces.2015.04.027.CrossRefGoogle Scholar
  47. 47.
    L.E. Datnoff, Crop Protect. 16, 525 (1997).  https://doi.org/10.1016/S0261-2194(97)00033-1.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Bing Rao
    • 1
  • Likun Gao
    • 1
    Email author
  • Huixin Dai
    • 1
  • Zhi Hong
    • 2
  • Haiyun Xie
    • 1
  1. 1.Faculty of Land Resource EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Guizhou Xinya Mining Co., LtdGuiyangChina

Personalised recommendations