Advertisement

JOM

pp 1–9 | Cite as

A Citric Acid/Na2S2O3 System for the Efficient Leaching of Valuable Metals from Spent Lithium-Ion Batteries

  • Guilan Gao
  • Xin He
  • Xiaoyi Lou
  • Zheng Jiao
  • Yaoguang Guo
  • Shuai ChenEmail author
  • Xingmin Luo
  • Suyang Sun
  • Jie Guan
  • Hao Yuan
Urban Mining: Characterization and Recycling of Solid Wastes
  • 17 Downloads

Abstract

Recycling of valuable metals from spent lithium-ion batteries (LIBs) appears inevitable for both environmental protection and resource recovery. In the present study, an efficient hydrometallurgical leaching of Co and Li from cathode materials of spent LIBs using a citric acid/sodium thiosulfate (Na2S2O3) system is explored. The effects of citric acid and Na2S2O3 concentrations, leaching time, temperature, and the solid/liquid (S/L) ratio on the leaching processes are also examined. With the exception of the S/L ratio, the increase of citric acid concentration, Na2S2O3 concentration, leaching time, and temperature all have positive effects on the leaching of Co and Li. Ultimately, approximately 96% of Co and 99% of Li are recycled from the spent LIBs in this citric acid/sodium thiosulfate system under the leaching conditions of an S/L ratio of 20 g l−1, concentration of Na2S2O3 of 0.3 M, concentration of citric acid of 1.2 M, leaching time of 30 min, and leaching temperature of 70°C. The Avrami equation is well fitted by the data of the leaching processes, and model equations are built to describe the leaching of Co and Li. Furthermore, pure sulfur can be obtained as a by-product during the leaching process, and SO2 produced during the reaction is easily collected as a raw material for industrial production of sulfuric acid. The present study represents a promising process for hydrometallurgical recovery of valuable metals from spent LIBs.

Notes

Acknowledgements

We gratefully acknowledge the financial support from Gaoyuan Discipline of Shanghai–Environmental Science and Engineering (Resource Recycling Science and Engineering), Shanghai “Chenguang” Program (15CG60), Shanghai Sailing Program (18YF1429900, 15YF1404300), Shanghai Natural Science Foundation (15ZR1416800), Natural Science Foundation of China (51678353), Cultivation discipline fund of Shanghai Polytechnic University (XXKPY1601), Shanghai Polytechnic University Leap Program (EGD19XQD02, EGD18XQD24), and Henan Key Laboratory of Coal Green Conversion (Henan Polytechnic University, CGCF201803).

Supplementary material

11837_2019_3629_MOESM1_ESM.pdf (194 kb)
Supplementary material 1 (PDF 194 kb)

References

  1. 1.
    B. Scrosati, J. Hassoun, and Y.K. Sun, Energy Environ. Sci. 4, 3287 (2011).CrossRefGoogle Scholar
  2. 2.
    J. Ordoñez, E.J. Gago, and A. Girard, Renew. Sustain. Energy Rev. 60, 195 (2016).CrossRefGoogle Scholar
  3. 3.
    G.J. Wang, H.P. Zhang, L.J. Fu, B. Wang, and Y.P. Wu, Electrochem. Commun. 9, 1873 (2007).CrossRefGoogle Scholar
  4. 4.
    R.C. Wang, Y.C. Lin, and S.H. Wu, Hydrometallurgy 99, 194 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, and W. He, Waste Manag. 51, 227 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Li, W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, J. Power Sources 282, 544 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.M. An, J. Sohn, and K. Kwon, J. Hazard. Mater. 313, 138 (2016).CrossRefGoogle Scholar
  8. 8.
    X. Zeng, J. Li, and N. Singh, Crit. Rev. Environ. Sci. Technol. 44, 1129 (2014).CrossRefGoogle Scholar
  9. 9.
    E. Gratz, Q. Sa, D. Apelian, and Y. Wang, J. Power Sources 262, 255 (2014).CrossRefGoogle Scholar
  10. 10.
    B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo, and S. Angaiah, Nanoscale 10, 20414 (2018).CrossRefGoogle Scholar
  11. 11.
    Z. Qu, M. Shi, H. Wu, Y. Liu, J. Jiang, and C. Yan, J. Power Sources 410–411, 179 (2019).CrossRefGoogle Scholar
  12. 12.
    K.S. Sangwan and A. Jindal, Int. J. Sustain. Eng. 6, 359 (2013).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, Y. Xie, X. Lin, H. Li, and H. Cao, J. Mater. Cycles Waste Manag. 15, 420 (2013).CrossRefGoogle Scholar
  14. 14.
    S.A. Mazen and N.I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015).CrossRefGoogle Scholar
  15. 15.
    D. Song, X. Wang, E. Zhou, P. Hou, F. Guo, and L. Zhang, J. Power Sources 232, 348 (2013).CrossRefGoogle Scholar
  16. 16.
    J. Li, G. Wang, and Z. Xu, J. Hazard. Mater. 302, 97 (2016).CrossRefGoogle Scholar
  17. 17.
    G.P. Nayaka, K.V. Pai, G. Santhosh, and J. Manjanna, Hydrometallurgy 161, 54 (2016).CrossRefGoogle Scholar
  18. 18.
    L. Yao, H. Yao, G. Xi, and Y. Feng, RSC Adv. 6, 17947 (2016).CrossRefGoogle Scholar
  19. 19.
    K. Liu and F.S. Zhang, J. Hazard. Mater. 316, 19 (2016).CrossRefGoogle Scholar
  20. 20.
    Z. Niu, Y. Zou, B. Xin, S. Chen, C. Liu, and Y. Li, Chemosphere 109, 92 (2014).CrossRefGoogle Scholar
  21. 21.
    N.B. Horeh, S.M. Mousavi, and S.A. Shojaosadati, J. Power Sources 320, 257 (2016).CrossRefGoogle Scholar
  22. 22.
    Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, J. Clean. Prod. 116, 249 (2016).CrossRefGoogle Scholar
  23. 23.
    D.S. Kim, J.S. Sohn, C.K. Lee, J.H. Lee, K.S. Han, and Y.I. Lee, J. Power Sources 132, 145 (2004).CrossRefGoogle Scholar
  24. 24.
    J. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J. Wang, and B. Liang, J. Power Sources 177, 512 (2008).CrossRefGoogle Scholar
  25. 25.
    L. Zhao, D. Yang, and N.W. Zhu, J. Hazard. Mater. 160, 648 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Li, J. Ge, R. Chen, F. Wu, S. Chen, and X. Zhang, Waste Manag. 30, 2615 (2010).CrossRefGoogle Scholar
  27. 27.
    L. Li, J. Lu, Y. Ren, X.X. Zhang, R.J. Chen, F. Wu, and K. Amine, J. Power Sources 218, 21 (2012).CrossRefGoogle Scholar
  28. 28.
    F. Pagnanelli, E. Moscardini, P. Altimari, T. Abo Atia, and L. Toro, Waste Manag. 51, 214 (2016).CrossRefGoogle Scholar
  29. 29.
    R. Golmohammadzadeh, F. Rashchi, and E. Vahidi, Waste Manag. 64, 244 (2017).CrossRefGoogle Scholar
  30. 30.
    J. Kang, G. Senanayake, J. Sohn, and S.M. Shin, Hydrometallurgy 100, 168 (2010).CrossRefGoogle Scholar
  31. 31.
    A. Chagnes and B. Pospiech, J. Chem. Technol. Biotechnol. 88, 1191 (2013).CrossRefGoogle Scholar
  32. 32.
    F. Pagnanelli, E. Moscardini, G. Granata, S. Cerbelli, L. Agosta, A. Fieramosca, and L. Toro, J. Ind. Eng. Chem. 20, 3201 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Joulié, E. Billy, R. Laucournet, and D. Meyer, Hydrometallurgy 169, 426 (2017).CrossRefGoogle Scholar
  34. 34.
    L. Li, J.B. Dunn, X.X. Zhang, L. Gaines, R.J. Chen, F. Wu, and K. Amine, J. Power Sources 233, 180 (2013).CrossRefGoogle Scholar
  35. 35.
    L. Li, J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu, J. Hazard. Mater. 176, 288 (2010).CrossRefGoogle Scholar
  36. 36.
    X. Zeng, J. Li, and B. Shen, J. Hazard. Mater. 295, 112 (2015).CrossRefGoogle Scholar
  37. 37.
    X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan, Waste Manag. 38, 349 (2015).CrossRefGoogle Scholar
  38. 38.
    G.P. Nayaka, J. Manjanna, K.V. Pai, R. Vadavi, S.J. Keny, and V.S. Tripathi, Hydrometallurgy 151, 73 (2015).CrossRefGoogle Scholar
  39. 39.
    J. Wang, M. Chen, H. Chen, T. Luo, and Z. Xu, Proced. Environ. Sci. 16, 443 (2012).CrossRefGoogle Scholar
  40. 40.
    J. Guan, Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang, and Z. Guo, ACS Sustain. Chem. Eng. 5, 1026 (2017).CrossRefGoogle Scholar
  41. 41.
    E. Billy, M. Joulié, R. Laucournet, A. Boulineau, E. De Vito, and D. Meyer, ACS Appl. Mater. Interfaces 10, 16424 (2018).CrossRefGoogle Scholar
  42. 42.
    P. Ashtari and P. Pourghahramani, J. Mater. Cycles Waste Manag. 20, 155 (2018).CrossRefGoogle Scholar
  43. 43.
    P. Meshram, B.D. Pandey, and T.R. Mankhand, Waste Manag. 45, 306 (2015).CrossRefGoogle Scholar
  44. 44.
    E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Hydrometallurgy 167, 66 (2017).CrossRefGoogle Scholar
  45. 45.
    R. Golmohammadzadeh, F. Faraji, and F. Rashchi, Resour. Conserv. Recycl. 136, 418 (2018).CrossRefGoogle Scholar
  46. 46.
    S. Sakultung, K. Pruksathorn, and M. Hunsom, Korean J. Chem. Eng. 24, 272 (2007).CrossRefGoogle Scholar
  47. 47.
    B. Fan, X. Chen, T. Zhou, J. Zhang, and B. Xu, Waste Manag. Res. 34, 474 (2016).CrossRefGoogle Scholar
  48. 48.
    C.K. Lee and K.I. Rhee, Hydrometallurgy 68, 5 (2003).CrossRefGoogle Scholar
  49. 49.
    M. Joulié, R. Laucournet, and E. Billy, J. Power Sources 247, 551 (2014).CrossRefGoogle Scholar
  50. 50.
    R. Stoyanova, E. Zhecheva, and L. Zarkova, Solid State Ion. 73, 233 (1994).CrossRefGoogle Scholar
  51. 51.
    B. Swain, J. Jeong, J.C. Lee, G.H. Lee, and J.S. Sohn, J. Power Sources 167, 536 (2007).CrossRefGoogle Scholar
  52. 52.
    L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang, Hydrometallurgy 108, 80 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.Research Center of Resource Recycling Science and EngineeringShanghai Polytechnic UniversityShanghaiChina
  3. 3.School of Environmental and Materials EngineeringShanghai Polytechnic UniversityShanghaiChina
  4. 4.Henan Key Laboratory of Coal Green ConversionHenan Polytechnic UniversityJiaozuoChina
  5. 5.Shanghai Waigaoqiao Free Trade Zone Environmental Protection Service Co., Ltd.ShanghaiChina
  6. 6.Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina

Personalised recommendations