, Volume 71, Issue 9, pp 3129–3134 | Cite as

Structure and Multifunctional Properties of Co50V33Ga16Sb1 Alloy

  • Y. S. Huang
  • C. JingEmail author
  • X. D. Sun
  • Y. L. Zhang
  • Z. Li
  • M. F. Ye
  • Y. N. Wu
Advances in Processing, Manufacturing, and Applications of Magnetic Materials


Co50V33Ga17−xSbx (x = 0, 1, 2) alloys were prepared by the arc-melting method. The effect of substitution of Sb for Ga on the crystalline structure, martensitic transformation (MT), magnetocaloric effect and shape memory effect of Co50V33Ga17 alloy has been investigated. The experimental results combined with theoretical calculation results indicate that Co50V33Ga17−xSbx (x = 0, 1, 2) series alloys are stabilized in a highly ordered Cu2MnAl (L21)-type structure with a space group \( {\text{F}}m\bar{3}m \) (no. 225) and Pearson’s symbol cF16 at 300 K. The temperature dependence of magnetization indicates that both Co50V33Ga16Sb1 and Co50V33Ga15Sb2 alloys experience the MT process; however, only Co50V33Ga16Sb1 possesses metamagnetic MT, which is relatively sensitive to the applied magnetic field. Associated with such a prominent behavior, the isothermal entropy change was obtained, which is about 4.53 J K−1 kg−1, 7.51 J K−1 kg−1 and 10.67 J K−1 kg−1 at about 164 K under the applied field of 1 T, 2 T and 3 T, respectively. Furthermore, a large strain value of 0.33% in Co50V33Ga16Sb1 alloy was obtained under an external magnetic field of 3 T during the MT, which is larger than that of 0.28% induced by temperature. These salient features indicate that the alloy may probably act as a potential candidate for applications in the shape memory alloy, magnetic refrigeration and magnetic sensors.



This work was supported by the National Natural Science Foundation of China (Nos. 51371111, 51661029).


  1. 1.
    R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).CrossRefGoogle Scholar
  2. 2.
    K. Inomata, N. Ikeda, N. Tezuka, R. Goto, S. Sugimoto, M. Wojcik, and E. Jedryka, Sci. Technol. Adv. Mater. 9, 014101 (2008).CrossRefGoogle Scholar
  3. 3.
    R. Farshchi and M. Ramsteiner, J. Appl. Phys. 113, 191101 (2013).CrossRefGoogle Scholar
  4. 4.
    A.W. Carbonari, R.N. Saxena, W. Pendl Jr, J. Mestnik Filho, R.N. Attili, M. Olzon-Dionysio, and S.D. de Souza, J. Magn. Magn. Mater. 163, 313 (1996).CrossRefGoogle Scholar
  5. 5.
    Y. Miura, H. Uchida, Y. Oba, K. Abe, and M. Shirai, Phys. Rev. B 78, 064416 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Sargolzaei, M. Richter, K. Koepernik, I. Opahle, H. Eschrig, and I. Chaplygin, Phys. Rev. B 74, 224410 (2006).CrossRefGoogle Scholar
  7. 7.
    I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).CrossRefGoogle Scholar
  8. 8.
    X. Xu, T. Omori, M. Nagasako, A. Okubo, R.Y. Umetsu, T. Kanomata, K. Ishida, and R. Kainuma, Appl. Phys. Lett. 103, 164104 (2013).CrossRefGoogle Scholar
  9. 9.
    K. Hirata, X. Xu, T. Omori, M. Nagasako, and R. Kainuma, J. Alloys Compd. 642, 200 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Jiang, X. Xu, T. Omori, M. Nagasako, J. Ruan, S. Yang, C. Wang, X. Liu, and R. Kainuma, Mater Sci. Eng. A 676, 191 (2016).CrossRefGoogle Scholar
  11. 11.
    H. Jiang, C. Wang, W. Xu, X. Xu, S. Yang, R. Kainuma, and X. Liu, Mater. Des. 116, 300 (2017).CrossRefGoogle Scholar
  12. 12.
    X. Xu, A. Nagashima, M. Nagasako, T. Omori, T. Kanomata, and R. Kainuma, Appl. Phys. Lett. 110, 121906 (2017).CrossRefGoogle Scholar
  13. 13.
    C. Liu, Z. Li, Y. Zhang, Y. Huang, M. Ye, X. Sun, G. Zhang, Y. Cao, K. Xu, and C. Jing, Appl. Phys. Lett. 112, 211903 (2018).CrossRefGoogle Scholar
  14. 14.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, and A. Planes, Nat. Mater. 4, 450 (2005).CrossRefGoogle Scholar
  15. 15.
    Z. Li, K. Xu, Y. Zhang, C. Tao, D. Zheng, and C. Jing, Sci. Rep. 5, 15143 (2015).CrossRefGoogle Scholar
  16. 16.
    X.J. He, K. Xu, S.X. Wei, Y.L. Zhang, Z. Li, and C. Jing, J. Mater. Sci. 52, 2915 (2017).CrossRefGoogle Scholar
  17. 17.
    N.V. Thang, H. Yibole, X.F. Miao, K. Goubitz, L. van Eijck, N.H. van Dijk, and E. Brück, JOM 69, 1432 (2017).CrossRefGoogle Scholar
  18. 18.
    B. Yu, M. Liu, P.W. Egolf, and A. Kitanovski, Int. J. Ref. 33, 1029 (2010).CrossRefGoogle Scholar
  19. 19.
    X. Si, Y. Liu, Y. Shen, W. Yu, X. Ma, Z. Zhang, Y. Xu, and T. Gao, J. Mater. Sci. 53, 3661 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Yu Dan’kov, A.M. Tishin, V.K. Pecharsky, and K.A. Gschneidner Jr, Phys. Rev. B 57, 6 (1998).CrossRefGoogle Scholar
  21. 21.
    T. Kanomata, Y. Chieda, K. Endo, H. Okada, M. Nagasako, K. Kobayashi, R. Kainuma, R.Y. Umetsu, H. Takahashi, Y. Furutani, H. Nishihara, K. Abe, Y. Miura, and M. Shirai, Phys. Rev. B 82, 144415 (2010).CrossRefGoogle Scholar
  22. 22.
  23. 23.
    John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 18 (1996).CrossRefGoogle Scholar
  24. 24.
    G. Giovannetti and J. van den Brink, Phys. Rev. Lett. 100, 227603 (2008).CrossRefGoogle Scholar
  25. 25.
    R.Y. Umetsu, K. Kobayashi, R. Kainuma, Y. Yamaguchi, K. Ohoyama, A. Sakuma, and K. Ishida, J. Alloys Compd. 499, 1 (2010).CrossRefGoogle Scholar
  26. 26.
    T. Graf, F. Casper, J. Winterlik, B. Balke, G. Fecher, C. Felser, and Z. Anorg, Allg. Chem. 635, 976–981 (2009).CrossRefGoogle Scholar
  27. 27.
    T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Phys. Rev. B 72, 014412 (2005).CrossRefGoogle Scholar
  28. 28.
    P. Liao, C. Jing, D. Zheng, Z. Li, B. Kang, D. Deng, S. Cao, B. Lu, and J. Zhang, Solid State Commun. 217, 28 (2015).CrossRefGoogle Scholar
  29. 29.
    J. Sharma and K.G. Suresh, J. Alloys Compd. 620, 329 (2015).CrossRefGoogle Scholar
  30. 30.
    L. Feng, L. Ma, E.K. Liu, G.H. Wu, and W.H. Wang, Appl. Phys. Lett. 100, 152401 (2012).CrossRefGoogle Scholar
  31. 31.
    A. Ghosh and K. Mandal, J. Alloys Compd. 579, 295 (2013).CrossRefGoogle Scholar
  32. 32.
    B. Emre, S. Yüce, E. Stern-Taulats, A. Planes, S. Fabbrici, F. Albertini, and L. Mañosa, J. Appl. Phys. 113, 213905 (2013).CrossRefGoogle Scholar
  33. 33.
    K.A. GschneidnerJr, V.K. Pecharsky, and A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).CrossRefGoogle Scholar
  34. 34.
    V.K. Sharma, M.K. Chattopadhyay, and S.B. Roy, J. Phys. D Appl. Phys. 40, 1869 (2007).CrossRefGoogle Scholar
  35. 35.
    P. Entel, M.E. Gruner, D. Comtesse, and M. Wuttig, JOM 65, 1540 (2013).CrossRefGoogle Scholar
  36. 36.
    D. Wu, S. Xue, J. Frenzel, G. Eggeler, Q. Zhai, and H. Zheng, Mater. Sci. Eng. A 534, 568 (2012).CrossRefGoogle Scholar
  37. 37.
    Z. Li, K. Xu, Y.L. Zhang, and C. Jing, J. Appl. Phys. 117, 023902 (2015).CrossRefGoogle Scholar
  38. 38.
    L. Manosa, D. Gonzalez-Alonso, A. Planes, E. Bonnot, M. Barrio, J.L. Tamarit, S. Aksoy, and M. Acet, Nature Mater. 9, 478 (2010).CrossRefGoogle Scholar
  39. 39.
    A. Planes, L. Manosa, and M. Acet, J. Phys. Condens. Matter 21, 233201 (2009).CrossRefGoogle Scholar
  40. 40.
    S.K. Mccal, N. Nersessian, G.P. Carman, V.K. Ppecharsky, D.L. Sshlagel, and H.B. Radousky, JOM 68, 6 (2016).CrossRefGoogle Scholar
  41. 41.
    S. Aksoy, T. Krenke, M. Acet, E. Wassermann, X. Moya, L. Mañosa, and A. Planes, Appl. Phys. Lett. 91, 251915 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Y. S. Huang
    • 1
    • 2
  • C. Jing
    • 1
    Email author
  • X. D. Sun
    • 1
  • Y. L. Zhang
    • 1
  • Z. Li
    • 3
  • M. F. Ye
    • 1
  • Y. N. Wu
    • 2
  1. 1.Department of PhysicsShanghai UniversityShanghaiChina
  2. 2.Key Laboratory of Functional Materials and Devices for Informatics of Anhui Educational Institutions, Department of PhysicsFuyang Normal UniversityFuyangChina
  3. 3.Center for Magnetic Materials and Devices and Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education InstituteQujing Normal UniversityQujingChina

Personalised recommendations