Advertisement

JOM

, Volume 71, Issue 9, pp 3084–3093 | Cite as

Electromigration Behavior of Screen-Printing Silver Nanoparticles Interconnects

  • Wan-Hsuan Lin
  • Fan-Yi OuyangEmail author
Advanced Electronic Interconnection
  • 23 Downloads

Abstract

Printing technology is one of the promising patterning techniques in flexible electronic devices due to its low cost and large-area patternability. In this study, the electromigration (EM) behavior of printed interconnects composed of silver nanoparticles was investigated under a current density of 1.5 × 105 A/cm2 at ambient temperature of 150°C. During the EM test, the morphologies of silver nanoparticles changed as a result of the decrease in the cross-section of the interconnect and the increase in Joule heating generated under high current density. Once the temperature at the cathode of printed interconnects was higher than 350°C, the aggregation and grain growth of Ag nanoparticles began to occur. The Ag particles formed an island-like morphology and the connection among the Ag nanoparticles was completely broken, leading to the loss of their electrical conductivity and open-circuit failures of the printed interconnects at the cathode side.

Notes

Acknowledgements

We thank National Tsing Hua University/Industrial Technology Research Institute Joint Research Center, Taiwan, for financial support under Contract No. 104A0305k3 and Ministry of Science and Technology of Taiwan, for financial support under contract No. 105-2221-E-007-024-MY3.

References

  1. 1.
    S. Khan, L. Lorenzelli, and R.S. Dahiya, IEEE Sens. J. 15, 3164 (2015).CrossRefGoogle Scholar
  2. 2.
    S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M. Fréchet, and D. Poulikakos, Nanotechnology 18, 345202 (2007).CrossRefGoogle Scholar
  3. 3.
    H. Shin, H. Lee, H. Yoo, K.S. Lim, and M. Lee, Korean J. Met. Mater. 48, 163 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).CrossRefGoogle Scholar
  5. 5.
    A. Biswas, H. Eilers, and F. Hidden, Appl. Phys. Lett. 88, 013103 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Xia and Y. Sun, Adv. Mater. 14, 833 (2002).CrossRefGoogle Scholar
  7. 7.
    Y. Li, K.-S. Moon, and C.P. Wong, Mater. Sci. 308, 1419 (2005).Google Scholar
  8. 8.
    K.-S. Kim, W.-R. Myung, and S.-B. Jung, Electron. Mater. Lett. 8, 309 (2012).CrossRefGoogle Scholar
  9. 9.
    K.-S. Kim, Y. Kim, and S.-B. Jung, Nanoscale Res. Lett. 7, 49 (2012).CrossRefGoogle Scholar
  10. 10.
    C.-H. Tsou, K.-N. Liu, H.-T. Lin, and F.-Y. Ouyang, J. Electron. Mater. 45, 6123 (2016).CrossRefGoogle Scholar
  11. 11.
    T.L. Alford, E. Misra, S.K. Bhagat, and J.W. Mayer, Thin Solid Films 517, 1833 (2009).CrossRefGoogle Scholar
  12. 12.
    M.O. Alam, C. Bailey, B.Y. Wu, D. Yang and Y.C. Chan, High current density induced damage mechanisms in electronic solder joints: a state-of-the-art review, in 2007 International Symposium on High Density packaging and Microsystem Integration, pp. 1–7 (2007)Google Scholar
  13. 13.
    K.-T. Jang, J.-S. Hwang, Y.-J. Park, J.-C. Lee, N.-R. Kim, Yu Ji-Woo, and Y.-C. Joo, RSC Adv. 7, 9719 (2017).CrossRefGoogle Scholar
  14. 14.
    Z. Zhao, A. Mamidanna, C. Lefky, O. Hildreth, and T.L. Alford, J. Appl. Phys. 120, 125104 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Hauder, W. Hansch, J. Gstottner, and D. Schmitt-Landsiedel, Solid State Electron. 47, 1227 (2003).CrossRefGoogle Scholar
  16. 16.
    S. Strehle, S. Menzel, A. Jahn, U. Merkel, J.W. Bartha, and K. Wetzig, Microelectron. Eng. 86, 2396 (2009).CrossRefGoogle Scholar
  17. 17.
    A. Bittner, H. Seidel, and U. Schmid, Microelectron. Eng. 88, 127 (2011).CrossRefGoogle Scholar
  18. 18.
    J.R. Greer and R.A. Street, Acta Mater. 55, 6345 (2007).CrossRefGoogle Scholar
  19. 19.
    Tzu-Yu Hsu, J.-Y. Chang, H.-M. Chang, and F.-Y. Ouyang, Mater. Lett. 182, 55 (2016).CrossRefGoogle Scholar
  20. 20.
    Material Properties. Engineering ToolBox, https://www.engineeringtoolbox.com/ (2001)
  21. 21.
    J.H. Choi, K. Ryu, K. Park, and S.-J. Moon, Int. J. Heat Mass Tran. 85, 904 (2015).CrossRefGoogle Scholar
  22. 22.
    F.F. Lange, J. Am. Ceram. Soc. 67, 83 (1984).CrossRefGoogle Scholar
  23. 23.
    J. E. Morris, Nanoparticle Properties, Nanopackaging, ed. Morris, James (New York: Springer, 2008), p. 93Google Scholar
  24. 24.
    P. Zeng, S. Zajac, P.C. Clapp, and J.A. Rifkin, Mater. Sci. Eng., A 252, 301 (1998).CrossRefGoogle Scholar
  25. 25.
    M.J. Mayo, Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
  26. 26.
    M. Ohring, The Materials Science of Thin Films, ed. M. Ohring, (San Diego: Academic, 1992), p. 355Google Scholar
  27. 27.
    Y.J. Moon, H. Kang, K. Kang, and S.J. Moon, J. Electron. Mater. 44, 1192–1199 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations