Advertisement

JOM

, Volume 71, Issue 9, pp 3159–3163 | Cite as

Magnetocaloric Effect of Micro- and Nanoparticles of Gd5Si4

  • S. M. Harstad
  • A. A. El-Gendy
  • S. Gupta
  • V. K. Pecharsky
  • R. L. HadimaniEmail author
Advances in Processing, Manufacturing, and Applications of Magnetic Materials
  • 77 Downloads

Abstract

Materials exhibiting a large magnetocaloric effect (MCE) at or near room temperature are critical for solid-state refrigeration applications. The MCE is described by a change in entropy (ΔSM) and/or temperature (ΔTad) of a material in response to a change in applied magnetic field. Ball milled materials generally exhibit smaller ΔSM values compared to bulk; however, milling broadens the effect, potentially increasing the relative cooling power (RCP). The as-cast Gd5Si4 is an attractive option due to its magnetic transition at 340 K and associated MCE. Investigation of effect of particles size and transition temperature in the binary material, Gd5Si4, can lead to development of functionally graded bulk material with higher MCE and RCP than the traditional bulk materials. A two-step ball-milling process, in which coarse powder of Gd5Si4 was first milled with poly(ethylene glycol) followed by milling in heptane was used to produce fine particles of Gd5Si4 that showed a broad distribution in particle size. Magnetic measurement on the milled sample obtained after washing with water show a decrease in Curie temperature and significant broadening of the magnetic transition. Compared to bulk Gd5Si4, the maximum MCE of the milled samples is also reduced and shifted down by close to 30 K, but the MCE remains substantial over a broader temperature range. The RCP of both milled samples increased 75% from the bulk material.

Notes

Acknowledgements

Synthesis and materials processing at the Ames Laboratory was supported by the Office of Basics Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy (DOE). The Ames Laboratory is operated for the U.S. DOE by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. Work at VCU was partially funded by National Science Foundation, Award Numbers: 1357565 and 1726617.

References

  1. 1.
    S. Crossley, W. Li, X. Moya, and N.D. Mathur, Philos. Trans. A. Math. Phys. Eng. Sci. 374, 20150313 (2016).Google Scholar
  2. 2.
    V. Chaudhary, D.V. Maheswar Repaka, A. Chaturvedi, I. Sridhar, and R.V. Ramanujan, J. Appl. Phys. 116, 163918 (2014).Google Scholar
  3. 3.
    V. Chaudhary and R.V. Ramanujan, Sci. Rep. 6, 35156 (2016).Google Scholar
  4. 4.
    J.S. Blázquez, et al., Metall. Mater. Trans. 2, 131 (2015).MathSciNetGoogle Scholar
  5. 5.
    D.M. Rajkumar, M. Manivel Raja, R. Gopalan, and V. Chandrasekaran, J. Magn. Magn. Mater. 320, 1479 (2008).Google Scholar
  6. 6.
    N.J. Jones, H. Ucar, J.J. Ipus, M.E. McHenry, and D.E. Laughlin, J. Appl. Phys. 111, 07A334 (2012).Google Scholar
  7. 7.
    P. Gorria, J.L. Sánchez Llamazares, P. Álvarez, M.J. Pérez, J. Sánchez Marcos, and J.A. Blanco, J. Phys. D. Appl. Phys. 41, 192003 (2008).Google Scholar
  8. 8.
    V.K. Pecharsky and K.A. Gschneidner, J. Alloys Compd. 260, 98 (1997).Google Scholar
  9. 9.
    V.K. Pecharsky and K.A. Gschneidner, Appl. Phys. Lett. 70, 3299 (1997).Google Scholar
  10. 10.
    K.A. Gschneidner and V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000).Google Scholar
  11. 11.
    R.L. Hadimani and D.C. Jiles, IEEE Magn. Lett. 1, 6000104 (2010).Google Scholar
  12. 12.
    R.L. Hadimani, Y. Melikhov, J.E. Snyder, and D.C. Jiles, J. Appl. Phys. 105, 07A927 (2009).Google Scholar
  13. 13.
    R.L. Hadimani, Y. Melikhov, J. Snyder, and D. Jiles, J. Magn. Magn. Mater. 320, e696 (2008).Google Scholar
  14. 14.
    R.L. Hadimani, Y. Melikhov, J.E. Snyder, and D.C. Jiles, J. Appl. Phys. 103, 033906 (2008).Google Scholar
  15. 15.
    R.L. Hadimani and D.C. Jiles, J. Appl. Phys. 107, 09C501 (2010).Google Scholar
  16. 16.
    R.L. Hadimani, Y. Melikhov, J.E. Snyder, and D.C. Jiles, IEEE Trans. Magn. 45, 4368 (2009).Google Scholar
  17. 17.
    R.L. Hadimani, P.A. Bartlett, Y. Melikhov, J.E. Snyder, and D.C. Jiles, J. Magn. Magn. Mater. 323, 532 (2011).Google Scholar
  18. 18.
    S.N. Sambandam, B. Bethala, D.K. Sood, and S. Bhansali, Surf. Coat. Technol. 200, 1335 (2005).Google Scholar
  19. 19.
    A. Raghunathan, Ph.D. thesis (Cardiff University, 2010).Google Scholar
  20. 20.
    R.L. Hadimani, I.C. Nlebedim, Y. Melikhov, and D.C. Jiles, Bull. Am. Phys. Soc. 58 (2013). http://meetings.aps.org/link/BAPS.2013.MAR.Z12.12.
  21. 21.
    R.L. Hadimani, I.C. Nlebedim, Y. Melikhov, and D.C. Jiles, J. Appl. Phys. 113, 17A935 (2013).Google Scholar
  22. 22.
    R.L. Hadimani, Y. Mudryk, T.E. Prost, V.K. Pecharsky, K.A. Gschneidner, and D.C. Jiles, J. Appl. Phys. 115, 17C113 (2014).Google Scholar
  23. 23.
    R. Hadimani, S. Gupta, S. Harstad, V. Pecharsky, and D. Jiles, IEEE Trans. Magn. 51, 2504104 (2015).Google Scholar
  24. 24.
    S.M. Harstad, et al., AIP Adv. 9, 035116 (2019).Google Scholar
  25. 25.
    P.J. Bora, et al., Mater. Res. Express 6, 055053 (2019).Google Scholar
  26. 26.
    S. Harstad, Z. Hunagund, O. Boekelheide, Z.A. Hussein, A.A. El-Gendy, and R.L. Hadimani, Magnetic Nanostructured Materials: from Lab to Fab (New York: Elsevier, 2018), pp. 137–155.Google Scholar
  27. 27.
    S.G. Hunagund, S.M. Harstad, A.A. El-Gendy, S. Gupta, V.K. Pecharsky, and R.L. Hadimani, AIP Adv. 8, 056428 (2018).Google Scholar
  28. 28.
    S.M. Harstad, et al., AIP Adv. 7, 056411 (2017).Google Scholar
  29. 29.
    Z. Boekelheide, Z.A. Hussein, S.M. Harstad, A.A. El-Gendy, and R.L. Hadimani, IEEE Trans. Magn. 53, 5400204 (2017).Google Scholar
  30. 30.
    R.L. Hadimani, S. Gupta, S.M. Harstad, V.K. Pecharsky, and D.C. Jiles, IEEE Trans. Magn. 51, 5 (2015).Google Scholar
  31. 31.
    V.K. Pecharsky and K.A. Gschneidner Jr, Adv. Mater. 13, 683 (2001).Google Scholar
  32. 32.
    G. Giovanna do Couto, V. Svitlyk, M. Jafelicci, and Y. Mozharivskyj, Solid State Sci. 13, 209 (2011).Google Scholar
  33. 33.
    P.V. Trevizoli, C.S. Alves, M.A.B. Mendes, A.M.G. Carvalho, and S. Gama, J. Magn. Magn. Mater. 320, 1582 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Nuclear EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of PhysicsUniversity of Texas El PasoEl PasoUSA
  3. 3.Ames Laboratory, Division of Materials Science and EngineeringU.S. Department of EnergyAmesUSA
  4. 4.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations