Advertisement

JOM

, Volume 71, Issue 9, pp 3135–3141 | Cite as

Precipitation Behavior of AlN in High-Magnetic-Induction Grain-Oriented Silicon Steel Slab

  • Xin Li
  • Min WangEmail author
  • YanPing Bao
  • Jian Gong
  • Xianhui Wang
  • Weiguang Pang
Advances in Processing, Manufacturing, and Applications of Magnetic Materials
  • 32 Downloads

Abstract

The magnetic properties of high-magnetic-induction grain-oriented silicon steel are strongly related to the precipitation and dissolution of the AlN inhibitor. The three-dimensional morphology, size, quantity, and microstructure of AlN in oriented silicon steel slabs have been investigated by an electrolytic method, automated analysis technology for inclusions, and transmission electron microscopy. The AlN particles presented plate-like and rectangular blocks, precipitating more easily in the center of the slab. The morphology of AlN is determined by its hexagonal crystal system structure and growth rate in (210), (001), and (110) planes during solidification of the slab. Complete dissolution of AlN particles approaching 10 μm is difficult to achieve on thermal processing at 1423 K. Special attention should be paid to control of the precipitation size of AlN during solidification to improve the slab reheating process.

Notes

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant No. 51774031), Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University (SKLASS 2017-12), China, and Shougang Qian’an Iron & Steel Company.

References

  1. 1.
    M. Littman, J. Magn. Magn. Mater. 26, 1 (1982).CrossRefGoogle Scholar
  2. 2.
    M. Yan, H. Qian, P. Yan, H. Song, Y. Shao, and W. Mao, Acta Metall. Sin. 48, 16 (2012).CrossRefGoogle Scholar
  3. 3.
    K. Price, B. Goode, and D. Power, Ironmak. Steelmak. 43, 636 (2016).CrossRefGoogle Scholar
  4. 4.
    E. Gutiérrez-Castañeda and A. Salinas-Rodríguez, J. Magn. Magn. Mater. 323, 2524 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Ros-Yañez, Y. Houbaert, O. Fischer, and J. Scheider, J. Mater. Process. Technol. 141, 132 (2003).CrossRefGoogle Scholar
  6. 6.
    H. Song, H. Liu, H. Lu, H. Li, W. Liu, X. Zhang, and G. Wang, Mater. Sci. Eng. A-Struct. 605, 260 (2014).CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Y. Zhang, X. Lu, F. Fang, G. Cao, C. Li, Y. Xu, R. Misra, and G. Wang, Steel Res. Int. 87, 1601 (2016).CrossRefGoogle Scholar
  8. 8.
    K. Ishiyama, K. Arai, and T. Honda, J. Appl. Phys. 70, 6262 (1991).CrossRefGoogle Scholar
  9. 9.
    F. Fang, Y. Zhang, X. Lu, Y. Wang, G. Gao, Y. Guo, Y. Xu, G. Wang, and R. Misra, Mater. Des. 105, 398 (2016).CrossRefGoogle Scholar
  10. 10.
    J. Oh, S. Cho, and J. Jonas, ISIJ Int. 41, 484 (2001).CrossRefGoogle Scholar
  11. 11.
    F. Lu, Res. Iron. Steel. 6, 54 (1996).Google Scholar
  12. 12.
    H. Li, Y. Feng, X. Qi, and D. Cang, J. Liang. Acta Metall. Sin. 49, 562 (2013).CrossRefGoogle Scholar
  13. 13.
    K. Günther, G. Abbruzzese, S. Fortunati, and G. Ligi, Steel Res. Int. 76, 413 (2005).CrossRefGoogle Scholar
  14. 14.
    T. Sakai, M. Shiozaki, and K. Takashina, J. Appl. Phys. 50, 2369 (1979).CrossRefGoogle Scholar
  15. 15.
    J. Wang, B. Zhou, Q. Li, Y. Zhu, and H. Sun, Trans. Nonferr. Metal. Soc. 15, 460 (2005).Google Scholar
  16. 16.
    G. Liu, C. Ling, L. Fan, B. Fu, L. Xiang, and S. Qiu, J. Iron. Steel. Res. 26, 60 (2014).Google Scholar
  17. 17.
    Y. Chen, Y. Wang, and A. Zhao, J. Iron. Steel Res. Int. 19, 51 (2012).CrossRefGoogle Scholar
  18. 18.
    W. Swift, Metall. Mater. Trans. B 4, 153 (1973).CrossRefGoogle Scholar
  19. 19.
    Y. Li, W. Mao, and P. Yang, J. Mater. Sci. Technol. 27, 1120 (2011).CrossRefGoogle Scholar
  20. 20.
    X. Chen, C. Zhu, L. Deng, and G. Li, Adv. Mater. Res. 906, 268 (2014).CrossRefGoogle Scholar
  21. 21.
    C. Zhu, X. Chen, G. Li, Y. Fu, and Y. Jiang, J. Chongqing Univ. 38, 111 (2015).Google Scholar
  22. 22.
    Y. Liu, L. Zhang, H. Duan, Y. Zhang, Y. Luo, and A. Conejo, Metall. Mater. Trans. A 47, 3015 (2016).CrossRefGoogle Scholar
  23. 23.
    F. Wilson and T. Gladman, Metall. Rev. 33, 221 (1988).CrossRefGoogle Scholar
  24. 24.
    S. Taguchi and A. Sakakura, Acta Metall. 14, 405 (1966).CrossRefGoogle Scholar
  25. 25.
    N. Zolotorevsky, V. Pletenev, and Y. Titovets, Model. Simul. Mater. Sci. 6, 383 (1988).CrossRefGoogle Scholar
  26. 26.
    G. Yazdi, M. Syväjärvi, and R. Yakimova, Phys. Scr. T126, 127 (2006).CrossRefGoogle Scholar
  27. 27.
    A. Tuling and B. Mintz, Mater. Sci. Technol. 32, 568 (2015).CrossRefGoogle Scholar
  28. 28.
    Q. Yong, Secondary Phases in Steels (Beijing: Metallurgical Industry Press, 2006), pp. 300–319.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xin Li
    • 1
  • Min Wang
    • 1
    Email author
  • YanPing Bao
    • 1
  • Jian Gong
    • 2
  • Xianhui Wang
    • 2
  • Weiguang Pang
    • 2
  1. 1.State Key Lab of Advanced MetallurgyUniversity of Science & Technology BeijingBeijingChina
  2. 2.Shougang Qian’an Iron & Steel CompanyQian’anChina

Personalised recommendations