Advertisement

JOM

, Volume 71, Issue 11, pp 4034–4040 | Cite as

Evolution of Microstructures and Properties of a New γ/γ′ Co-Based Superalloy via Forging Process

  • X. K. Zhong
  • X. F. Wang
  • Y. L. Si
  • F. S. HanEmail author
Microstructure Evolution During Deformation Processing
  • 136 Downloads

Abstract

A new γ/γ′ Co-based superalloy has been developed with a large temperature range between the γ′ solvus and solidus temperature, which can be formed through the conventional casting and wrought processing route. The microstructure, mechanical and corrosion resistance properties of this new γ/γ′ Co-based superalloy are characterized in the present study. The results show that even in the forged state, the partial recrystallization and grain growth processes occur, but the γ′ precipitates remain very fine. Forging and aging increase the mechanical strength and facilitate the formation of stable passive films due to decreased low-angle boundaries and increased Σ3 twin boundaries. The twin boundaries are beneficial for improving both the mechanical properties and corrosion resistance, which provides guidance for tailoring the microstructure and properties of novel Co-based superalloys.

Notes

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Nos. 51671187, 51701206) and the Foundation of President of Hefei Institutes of Physical Science, Chinese Academy of Sciences (No. YZJJ201703).

References

  1. 1.
    C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II (New York: Wiley, 1987).Google Scholar
  2. 2.
    R.C. Reed, The Superalloys: Fundamentals and Applications (New York: Cambridge University Press, 2006).CrossRefGoogle Scholar
  3. 3.
    J. Sato, T. Omari, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Science 312, 90 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Scr. Mater. 63, 1197 (2010).CrossRefGoogle Scholar
  5. 5.
    F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, and Q. Feng, Mater. Lett. 112, 215 (2013).CrossRefGoogle Scholar
  6. 6.
    Y.M. Eggeler, M.S. Titus, A. Suzuki, and T.M. Pollock, Acta Mater. 77, 352 (2014).CrossRefGoogle Scholar
  7. 7.
    I. Povstugar, P.-P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe, Acta Mater. 78, 78 (2014).CrossRefGoogle Scholar
  8. 8.
    L.P. Freund, O.M.D.M. Messé, J.S. Barnard, M. Göken, S. Neumeier, and C.M.F. Rae, Acta Mater. 123, 295 (2017).CrossRefGoogle Scholar
  9. 9.
    T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki, JOM 62, 58 (2010).CrossRefGoogle Scholar
  10. 10.
    E.T. McDevitt, MATEC Web Conf. 14, 02001 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Neumeier, L.P. Freund, and M. Göken, Scr. Mater. 109, 104 (2015).CrossRefGoogle Scholar
  12. 12.
    E.P. Degarmo, J.T. Black, and R.A. Kohser, Materials and Processes in Manufacturing, 9th ed. (New York: Wiley, 2003).Google Scholar
  13. 13.
    X.Y. Li, J. Zhang, L.J. Rong, and Y.Y. Li, J. Alloys Compd. 467, 383 (2009).CrossRefGoogle Scholar
  14. 14.
    A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (New York: Wiley, 2001).Google Scholar
  15. 15.
    H. Carpenter and S. Tamura, Proc. R. Soc. Lond. Ser. A 113, 161 (1926).CrossRefGoogle Scholar
  16. 16.
    F. Chmelik, E. Pink, J. Krol, J. Balik, J. Pesicka, and P. Lukac, Acta Mater. 46, 4435 (1998).CrossRefGoogle Scholar
  17. 17.
    S. Zhao, X.Y. Li, and L.J. Rong, Mater. Lett. 65, 2388 (2011).CrossRefGoogle Scholar
  18. 18.
    M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe, Acta Mater. 50, 2331 (2002).CrossRefGoogle Scholar
  19. 19.
    V. Randle, Acta Mater. 52, 4067 (2004).CrossRefGoogle Scholar
  20. 20.
    V. Randle and G. Owen, Acta Mater. 54, 1777 (2006).CrossRefGoogle Scholar
  21. 21.
    W. Wang and H. Guo, Mater. Sci. Eng. A 445–446, 155 (2007).CrossRefGoogle Scholar
  22. 22.
    G. Gottstein, Physical Foundations of Materials Science (Berlin: Springer, 2004).CrossRefGoogle Scholar
  23. 23.
    S.Y. Yu, W.E. O’Grady, D.E. Ramaker, and P.M. Natishan, J. Electrochem. Soc. 147, 2952 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • X. K. Zhong
    • 1
    • 2
  • X. F. Wang
    • 1
  • Y. L. Si
    • 1
    • 2
  • F. S. Han
    • 1
    Email author
  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations