Advertisement

JOM

, Volume 71, Issue 9, pp 3266–3276 | Cite as

Constitutive Topics in Physical Chemistry of High-Temperature Nonferrous Metallurgy: A Review—Part 2. Reduction and Refining

  • M. Shamsuddin
  • H. Y. SohnEmail author
Technical Article
  • 19 Downloads

Abstract

In this Part 2 of the review, we demonstrate the roles of phase rule, free energy and activity in the reduction and refining of different nonferrous metals categorized as common, reactive, rare and refractory. Based on the discussions in the following sections, the reader will appreciate the contributions of phase rule, activity and free energy in the selection of particular steps in the extraction of different types of metals. It also demonstrates how difficult reactions like the removal of nickel from blister copper can be made feasible by generating conditions according to the van’t Hoff isotherm.

Notes

References

  1. 1.
    M. Shamsuddin and H.Y. Sohn, JOM (2019).  https://doi.org/10.1007/s11837-019-03620-7.Google Scholar
  2. 2.
    E.T. Turkdogan, Physical Chemistry of High Temperature Reactions (Chapter 9) (New York: Academic Press, 1980).Google Scholar
  3. 3.
    M. Shamsuddin, Physical Chemistry of Metallurgical Processes, The Minerals, Metals and Materials Society (Chapters 5, 7, 8, 9, 10) (Hoboken: Wiley, 2016).Google Scholar
  4. 4.
    H.J.T. Ellingham, J. Soc. Chem. Ind. Trans. 63, 125 (1944).CrossRefGoogle Scholar
  5. 5.
    N. Sevryukov, B. Kuzmin, and Y. Chelishchev, (translated: Kuznetsov B.) General Metallurgy (Chapter 19 and 20) (Moscow, Peace Publishers, 1960).Google Scholar
  6. 6.
    C.D. Harrington and A.E. Ruehle, Uranium Production Technology (Chapter 7) (New York: D Van Nostrand Co. Inc., 1959).Google Scholar
  7. 7.
    T. Rosenqvist, Principles of Extractive Metallurgy (Chapter 8) (New York: McGraw-Hill Book Co., 1974).Google Scholar
  8. 8.
    S.W.K. Morgan and J. Lumsden, JOM 11, 270 (1959).CrossRefGoogle Scholar
  9. 9.
    F. Chen, Y. Mohassab, T. Jiang, and H.Y. Sohn, Metall. Mater. Trans. B 46B, 1133 (2015).CrossRefGoogle Scholar
  10. 10.
    F. Chen, Y. Mohassab, S. Zhang, and H.Y. Sohn, Metall. Mater. Trans. B 46B, 1716 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Shamsuddin and H. Y. Sohn, Extractive Metallurgy of Tunsten, Proceedings of the Symposium on Extractive Metallurgy of Refractory Metals (Chicago, AIME, February 22–24, 1981), p. 205.Google Scholar
  12. 12.
    J. Szekely, J.W. Evans, and H.Y. Sohn, Gas-Solid Reactions (New York: Academic Press, 1976).Google Scholar
  13. 13.
    C.H.P. Lupis and J.F. Elliott, Acta Met. 14, 529 (1966).CrossRefGoogle Scholar
  14. 14.
    W.G. Davenport, M. King, M. Schlesinger, and A. K. Biswas, Extractive Metallurgy of Copper (Chapters 5–10), 4th ed. (Oxford: Elsevier Science Ltd., 2002).Google Scholar
  15. 15.
    A.E. Van Arkel and J.H. de Boer, Z. Anorg. Chem. 148, 345 (1925).CrossRefGoogle Scholar
  16. 16.
    R.A.J. Shelton, Trans. Inst. Min. Metall. 77, C32 (1968).Google Scholar
  17. 17.
    R.A.J. Shelton, Trans. Inst. Min. Metall. 77, C113 (1968).Google Scholar
  18. 18.
    W.D. Jamrack, Rare Metal Extraction by Chemical Engineering Techniques (Chapter 8) (New York: MacMillan, 1963).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations