Advertisement

JOM

, Volume 71, Issue 9, pp 3057–3065 | Cite as

Interconnect Fabrication on Polymer Substrate using Submicron/Nano Silver Particles with the Assistance of Low-Density Irradiations

  • Guo-Lun Huang
  • Po-Hsiang Chiu
  • Masahisa Fujino
  • Jenn-Ming SongEmail author
Advanced Electronic Interconnection
  • 17 Downloads

Abstract

Low-energy Xenon flash pulses permit sintering of spray-pyrolyzed submicron Ag particles (SMPs) into conductive tracks with acceptable electrical resistivity (16.7 μΩ cm) on polyimide film in several seconds without extra heating. Mixed with Ag nanoparticles (20% in weight ratio), the resistivity of the obtained sintered mixed pastes can be reduced to 12.6 μΩ cm, which is nearly the same as those formed using nanoparticle pastes (11.2 μΩ cm). Using irradiation on the polymer substrate side, more uniform sintered deposits with better electrical conductance (ρ < 10 μΩ cm) and greater bending fatigue resistance could be achieved. This sheds light on a new method for preparing low-cost, bendable Ag interconnections.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology (Taiwan, R.O.C.) under contracts MOST 104-2628-E-005-001-MY2, for which the authors are grateful. This work was also supported by the “Innovation and Development Center of Sustainable Agriculture” from the Featured Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (Taiwan, R.O.C.).

References

  1. 1.
    T.H. Kao, J.M. Song, I.G. Chen, T.Y. Dong, and W.S. Hwang, Acta Mater. 59, 1184 (2011).CrossRefGoogle Scholar
  2. 2.
    J.T. Wu, S.L.C. Hsu, M.H. Tsai, and W.S. Hwang, J. Phys. Chem. C 114, 4659 (2010).CrossRefGoogle Scholar
  3. 3.
    Y. Wu, Y. Li, and B.S. Ong, J. Am. Chem. Soc. 129, 1862 (2007).CrossRefGoogle Scholar
  4. 4.
    S. Magdassi, A. Bassa, Y. Vinetsky, and A. Kamyshny, Chem. Mater. 15, 2208 (2003).CrossRefGoogle Scholar
  5. 5.
    J.S. Kang, J. Ryu, H.S. Kim, and H.T. Hahn, J. Electron. Mater. 40, 2268 (2011).CrossRefGoogle Scholar
  6. 6.
    W.H. Chung, H.J. Hwang, S.H. Lee, and H.S. Kim, Nanotechnology 24, 035202 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Cherrington, T.C. Claypole, D. Deganello, I. Mabbett, T. Watson, and D. Worsley, J. Mater. Chem. 21, 7562 (2011).CrossRefGoogle Scholar
  8. 8.
    T. Kumpulainen, J. Pekkanen, J. Valkama, J. Laakso, R. Tuokko, and M. Mäntysalo, Opt. Laser Technol. 43, 570 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Tobjörk, H. Aarnio, P. Pulkkinen, R. Bollström, A. Määttänen, P. Ihalainen, T. Mäkelä, J. Peltonen, M. Toivakka, and H. Tenhu, Thin Solid Films 20, 2949 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Denneulin, A. Blayo, C. Neuman, and J. Bras, J. Nanoparticle Res. 13, 3815 (2011).CrossRefGoogle Scholar
  11. 11.
    Q. Huang, W. Shen, Q. Xu, R. Tan, and W. Song, Mater. Lett. 123, 124 (2014).CrossRefGoogle Scholar
  12. 12.
    C. Gaspar, S. Passoja, J. Olkkonen, and M. Smolander, Microelectron. Eng. 149, 135 (2016).CrossRefGoogle Scholar
  13. 13.
    I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, Appl. Surf. Sci. 336, 157 (2015).CrossRefGoogle Scholar
  14. 14.
    H.M. Cronin, Z. Stoeva, M. Brown, M. Shkunov, S.R.P. Silva, and A.C.S. Appl, Mater. Interfaces 10, 21398 (2018).CrossRefGoogle Scholar
  15. 15.
    I. Kim, K. Woo, Z. Zhong, P. Ko, Y. Jang, M. Jung, J. Jo, S. Kwon, S.H. Lee, S. Lee, H. Youn, and J. Moon, Nanoscale 10, 7890 (2018).CrossRefGoogle Scholar
  16. 16.
    C.N. Chen, C.P. Chen, T.-Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, and I.G. Chen, Acta Mater. 60, 5914 (2012).CrossRefGoogle Scholar
  17. 17.
    T.Y. Dong, W.T. Chen, C.W. Wang, C.P. Chen, C.N. Chen, M.C. Lin, J.M. Song, I.G. Chen, and T.H. Kao, Phys. Chem. Chem. Phys. 11, 6269 (2009).CrossRefGoogle Scholar
  18. 18.
    S.I. Park, J.H. Ahn, X. Feng, S. Wang, Y. Huang, and J.A. Rogers, Adv. Funct. Mater. 18, 2673 (2008).CrossRefGoogle Scholar
  19. 19.
    S. Link, Z.L. Wang, and M.A. El-Sayed, J. Phys. Chem. B 103, 3529 (1999).CrossRefGoogle Scholar
  20. 20.
    C.H. Ryu, S.J. Joo, and H.S. Kim, Appl. Surf. Sci. 384, 182 (2016).CrossRefGoogle Scholar
  21. 21.
    W.H. Chung, H.J. Hwang, and H.S. Kim, Thin Solid Films 580, 61 (2015).CrossRefGoogle Scholar
  22. 22.
    E.B. Jeon, S.J. Joo, H. Ahn, and H.S. Kim, Thin Solid Films 603, 382 (2016).CrossRefGoogle Scholar
  23. 23.
    J.M. Song, T.Y. Pai, K.H. Hsieh, M.Y. Lai, C.N. Cheng, S.Y. Liang, H.Y. Lee, and L.T. Chen, RSC Adv. 6, 97449 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Jo, S.J. Oh, S.S. Lee, Y.H. Seo, B.H. Ryu, J. Moon, Y. Choi, and S. Jeong, J. Mater. Chem. C 2, 9746 (2014).CrossRefGoogle Scholar
  25. 25.
    Y.H. Son, J.Y. Jang, M.K. Kang, S. Ahn, and C.S. Lee, Thin Solid Films 656, 61 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Guo-Lun Huang
    • 1
  • Po-Hsiang Chiu
    • 1
  • Masahisa Fujino
    • 2
  • Jenn-Ming Song
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  3. 3.Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing UniversityTaichungTaiwan
  4. 4.Innovation and Development Center of Sustainable AgricultureNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations