pp 1–10 | Cite as

Influence of Heat Treatment on Microstructures and Impact Toughness of Mg-Al-Zn Alloy

  • Longhui Mao
  • Chuming Liu
  • Yingchun WanEmail author
  • Jianshen Wei
  • Yonghao Gao
  • Shunong Jiang
  • Zhiyong Chen
Technical Article


Microstructures and impact properties of the rolled Mg-8.10Al-0.46Zn-0.18Mn-0.18Ag (wt.%) alloy were investigated under various thermal conditions including as-rolled, solid solution (T4) and solid solution plus aging (T6) states. The results show that the impact toughness of the as-rolled alloy is slightly enhanced after solution treatment but remarkably reduced by the subsequent aging process, exhibiting a similar trend with the elongation of the alloy. Fractography analysis suggests that the impact toughness variations are closely associated with the changes in the deformation mode: the superior impact toughness of the as-rolled and T4 samples are mainly attributed to the occurrence of profuse twins during impact testing, while, in the T6 sample, the twinning activity is significantly suppressed due to the presence of β-Mg17Al12 phases. In addition, the lamellar-shaped β-Mg17Al12 phases are easy to fracture, which accelerates the crack propagation and thus degrades the impact property.



This work was supported by National Basic Research Program of China (Grant No. 2013CB632200), National Natural Science Foundation of China (Grant No. 51574291) and the Fundamental Research Funds of Central South University (Grant No. 502221707).

Supplementary material

11837_2019_3585_MOESM1_ESM.pdf (308 kb)
Supplementary material 1 (PDF 308 kb)


  1. 1.
    Alan A. Luo, JOM 54, 48 (2002).CrossRefGoogle Scholar
  2. 2.
    Mark Easton, Aiden Beer, Matthew Barnett, Chris Davies, Gordon Dunlop, Yvonne Durandet, Stuart Blacket, Tim Hilditch, and Peter Beggs, JOM 60, 57 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Zeng, C. Liu, Y. Gao, and S. Jiang, Mater. Sci. Eng. A 674, 491 (2016).CrossRefGoogle Scholar
  4. 4.
    Q. Wang, L. Xiao, W. Liu, H. Zhang, W. Cui, Z. Li, G. Wu, Q. Wang, L. Xiao, and W. Liu, Mater. Sci. Eng. A 705, 402 (2017).CrossRefGoogle Scholar
  5. 5.
    J. Cheng, Y. Mu, G. Zu, and G. Yao, Mater. Des. 123, 64 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Liao, M. Hotta, K. Kaneko, and K. Kondoh, Scr. Mater. 61, 208 (2009).CrossRefGoogle Scholar
  7. 7.
    Z.H. Huang, W.J. Qi, and J. Xu, Trans. Nonferrous Met. Soc. China 22, 2334 (2012).CrossRefGoogle Scholar
  8. 8.
    Y.L. Mu, Q.D. Wang, M.L. Hu, V. Janik, and D.D. Yin, Scr. Mater. 68, 885 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. Li, Z.M. Zhang, and Y. Xue, Trans. Nonferrous Met. Soc. China 21, 739 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Vedani and C. Mapelli, Mater. Sci. Tech. 17, 938 (2013).CrossRefGoogle Scholar
  11. 11.
    Colleen Bettles and Mark Gibson, JOM 57, 46 (2005).CrossRefGoogle Scholar
  12. 12.
    J.B. Clark, Acta Metall. Mater. 16, 141 (1968).CrossRefGoogle Scholar
  13. 13.
    D. Duly, Y. Brechet, and B. Chenal, Acta Metall. Mater. 40, 2289 (1992).CrossRefGoogle Scholar
  14. 14.
    S. Celotto and T.J. Bastow, Acta Mater. 49, 41 (2001).CrossRefGoogle Scholar
  15. 15.
    M. Ohno, D. Mirkovic, and R. Schmidfetzer, Acta Mater. 54, 3883 (2006).CrossRefGoogle Scholar
  16. 16.
    K. Braszczyńska, Magnesium Alloys-Design, Processing and Properties (Rijeka: Frank Czerwinski- InTech, 2011), pp. 95–112.Google Scholar
  17. 17.
    D. Duly, M.C. Cheynet, and Y. Brechet, Acta Mater. 42, 3843 (1994).CrossRefGoogle Scholar
  18. 18.
    J.H. Hollomon, Trans AIME 162, 268 (1945).Google Scholar
  19. 19.
    M.R. Barnett, S. Jacob, B.F. Gerard, and J.G. Mullins, Scr. Mater. 59, 1035 (2008).CrossRefGoogle Scholar
  20. 20.
    Y.Z. Lü, Q.D. Wang, W.J. Ding, X.Q. Zeng, and Y.P. Zhu, Mater. Lett. 44, 265 (2000).CrossRefGoogle Scholar
  21. 21.
    L. Mao, C. Liu, T. Chen, Y. Gao, S. Jiang, and R. Wang, Scr. Mater. 150, 87 (2018).CrossRefGoogle Scholar
  22. 22.
    M. Lentz, R.S. Coelho, B. Camin, C. Fahrenson, N. Schaefer, S. Selve, T. Link, I.J. Beyerlein, and W. Reimers, Mater. Sci. Eng. A 610, 54 (2014).CrossRefGoogle Scholar
  23. 23.
    J.F. Nie, X.L. Xiao, C.P. Luo, and B.C. Muddle, Micron 32, 857 (2001).CrossRefGoogle Scholar
  24. 24.
    X. Han and L. Hua, Mater. Des. 58, 508 (2014).CrossRefGoogle Scholar
  25. 25.
    J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
  26. 26.
    M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).CrossRefGoogle Scholar
  27. 27.
    M.A. Meyers, O. Vöhringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).CrossRefGoogle Scholar
  28. 28.
    J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Scr. Mater. 62, 301 (2010).CrossRefGoogle Scholar
  29. 29.
    L. Capolungo, I.J. Beyerlein, and C.N. Tomé, Scr. Mater. 60, 32 (2009).CrossRefGoogle Scholar
  30. 30.
    A. Ostapovets and A. Serra, J. Mater. Sci. 52, 533 (2016).CrossRefGoogle Scholar
  31. 31.
    L. Mao, C. Liu, Y. Gao, X. Han, S. Jiang, and Z. Chen, Mater. Sci. Eng. A 701, 7 (2017).CrossRefGoogle Scholar
  32. 32.
    J. Ragani, P. Donnadieu, C. Tassin, and J.J. Blandin, Scr. Mater. 65, 253 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Longhui Mao
    • 1
  • Chuming Liu
    • 1
  • Yingchun Wan
    • 1
    Email author
  • Jianshen Wei
    • 1
  • Yonghao Gao
    • 1
  • Shunong Jiang
    • 2
  • Zhiyong Chen
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Civil EngineeringCentral South UniversityChangshaChina

Personalised recommendations