pp 1–6 | Cite as

Manufacturing Oxide Dispersion-Strengthened (ODS) Steel Fuel Cladding Tubes Using the Cold Spray Process

  • Mia Lenling
  • Hwasung Yeom
  • Benjamin Maier
  • Greg Johnson
  • Tyler Dabney
  • Jeffrey Graham
  • Peter Hosemann
  • David Hoelzer
  • Stuart Maloy
  • Kumar SridharanEmail author
Advanced Manufacturing for Nuclear Energy


The cold spray materials deposition process has been investigated for manufacturing oxide dispersion-strengthened (ODS) steel fuel cladding tubes. Gas-atomized 14YWT ODS steel powder was used as the feedstock material. A parametric investigation of the cold spray process involving substrate materials of various hardnesses, gas preheat temperatures, and carrier gas compositions was performed to achieve the highest quality deposit. The high-velocity impact of the powder on the substrate led to dissolution of discrete oxide nanoparticles, which subsequently reprecipitated during postdeposition annealing at high temperatures. The tubes were manufactured by deposition on an Al-alloy mandrel substrate and subsequent chemical dissolution of the substrate. A 204-mm-long and 1-mm-thick ODS steel cladding tube was successfully manufactured. The grain growth and distribution of oxide nanoparticles in ferritic steel matrix were identified at elevated temperatures. Overall, the cold spray process holds considerable promise for rapid, cost-effective manufacturing of ODS steel cladding tubes.



This work was supported by US Department of Energy Grant No. DE-NE0008682.


  1. 1.
    M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell, Intermetallics 13, 387 (2005).CrossRefGoogle Scholar
  2. 2.
    D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger, J. Nucl. Mater. 367–370, 166 (2007).CrossRefGoogle Scholar
  3. 3.
    E. Aydogan, O. El-Atwani, S. Takajo, S.C. Vogel, and S.A. Maloy, Acta Mater. 148, 467 (2018).CrossRefGoogle Scholar
  4. 4.
    D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, and R.K. Nanstad, J. Nucl. Mater. 392, 353 (2009).CrossRefGoogle Scholar
  5. 5.
    V. Sagaradze, V. Shalaev, V. Arbuzov, B. Goshchitskii, Y. Tian, W. Qun, and S. Jiguang, J. Nucl. Mater. 295, 265 (2001).CrossRefGoogle Scholar
  6. 6.
    Y. Wu, J. Ciston, S. Kräemer, N. Bailey, G.R. Odette, and P. Hosemann, Acta Mater. 111, 108 (2016).CrossRefGoogle Scholar
  7. 7.
    S. L. N. Ford, J. Int. Commer. Econ. (2014).Google Scholar
  8. 8.
    S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, and K. Asabe, J. Nucl. Mater. 204, 74 (1993).CrossRefGoogle Scholar
  9. 9.
    S. Ukai, T. Yoshitake, S. Mizuta, Y. Matsudaira, S. Hagi, and T. Kobayashi, J. Nucl. Sci. Technol. 36, 710 (1999).CrossRefGoogle Scholar
  10. 10.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Acta Mater. 51, 4379 (2003).CrossRefGoogle Scholar
  11. 11.
    V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications (Cambridge: Woodhead, 2007).CrossRefGoogle Scholar
  12. 12.
    B. Maier, M. Lenling, H. Yeom, G. Johnson, S. Maloy, and K. Sridharan, Nucl. Eng. Technol. (2019).Google Scholar
  13. 13.
    B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, and K. Sridharan, JOM 70, 198 (2018).CrossRefGoogle Scholar
  14. 14.
    B.R. Maier, B.L. Garcia-Diaz, B. Hauch, L.C. Olson, R.L. Sindelar, and K. Sridharan, J. Nucl. Mater. 466, 712 (2015).CrossRefGoogle Scholar
  15. 15.
    H. Yeom, T. Dabney, G. Johnson, B. Maier, M. Lenling, and K. Sridharan, Int. J. Adv. Manuf. Technol. 100, 1373 (2019).CrossRefGoogle Scholar
  16. 16.
    D.J. Park, H.G. Kim, Y. Il Jung, J.H. Park, B.K. Choi, J.H. Yang, and Y.H. Koo, Fusion Eng. Des. 139, 81 (2019).CrossRefGoogle Scholar
  17. 17.
    W.A. Story, D.J. Barton, B.C. Hornbuckle, K.A. Darling, G.B. Thompson, and L.N. Brewer, Materialia 3, 239 (2018).CrossRefGoogle Scholar
  18. 18.
    K. Spencer and M.-X. Zhang, Surf. Coat. Technol. 205, 5135 (2011).CrossRefGoogle Scholar
  19. 19.
    A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Surf. Coat. Technol. 235, 283 (2013).CrossRefGoogle Scholar
  20. 20.
    X. Meng, J. Zhang, J. Zhao, Y. Liang, and Y. Zhang, J. Mater. Sci. Technol. 27, 809 (2011).CrossRefGoogle Scholar
  21. 21.
    R.C. Dykhuizen and M.F. Smith, J. Therm. Spray Technol. 7, 205 (1998).CrossRefGoogle Scholar
  22. 22.
    M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, and R.H. Hrabe, J. Therm. Spray Technol. 26, 1308 (2017).CrossRefGoogle Scholar
  23. 23.
    M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Surf. Coat. Technol. 309, 641 (2017).CrossRefGoogle Scholar
  24. 24.
    B.A. Bedard, T.J. Flanagan, A.T. Ernst, A. Nardi, A.M. Dongare, H.D. Brody, V.K. Champagne, S.-W. Lee, and M. Aindow, J. Therm. Spray Technol. 27, 1563 (2018).CrossRefGoogle Scholar
  25. 25.
    M.K. Miller, K.F. Russell, and D.T. Hoelzer, J. Nucl. Mater. 351, 261 (2006).CrossRefGoogle Scholar
  26. 26.
    N.J. Cunningham, Y. Wu, A. Etienne, E.M. Haney, G.R. Odette, E. Stergar, D.T. Hoelzer, Y.D. Kim, B.D. Wirth, and S.A. Maloy, J. Nucl. Mater. 444, 35 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Engineering Physics DepartmentUniversity of WisconsinMadisonUSA
  2. 2.University of California-BerkeleyBerkeleyUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations