Advertisement

JOM

pp 1–11 | Cite as

Comparative Study on the Oxidation Behavior of Austenitic and Ferritic Heat-Resistant Stainless Steels at High Temperatures

  • Yuqing Zhou
  • Dening ZouEmail author
  • Yang Pang
  • Tongyu Wei
  • Wei Zhang
  • Yingbo Zhang
  • Libo TongEmail author
  • Xiang Lv
  • WanWan Chen
Properties of Interfaced Materials and Films
  • 17 Downloads

Abstract

A comparative study of the high-temperature oxidation behavior and mechanism of 0Cr25Ni20 austenitic heat-resistant stainless steel (AHSS) and 0Cr18AlSi ferritic heat-resistant stainless steel (FHSS) at 800°C, 900°C, and 1000°C in air up to 140 h was performed using isothermal oxidation tests. The oxidation kinetics of 0Cr25Ni20 AHSS and 0Cr18AlSi FHSS followed the parabolic law. The oxide films on 0Cr25Ni20 AHSS were composed of continuous and dense Cr2O3, MnCr2O4, and a small amount of NiMn2O4, whereas silicon exhibited internal oxidation and deteriorated the adhesion between the oxide film and substrate. Nickel-free 0Cr18AlSi FHSS exhibited good oxidation resistance at 800°C and 900°C due to dense, continuous, and well-adhered multicomponent oxide films containing Al2O3, Cr2O3, MnCr2O4, and a small amount of MnFe2O4. The oxidation resistance of 0Cr18AlSi FHSS declined at 1000°C, mainly due to the formation of nonprotective Fe2O3 and severe internal oxidation of aluminum.

Notes

Acknowledgements

The authors acknowledge support of this work by the National Natural Science Foundation of China (51774226), Iron and Steel Joint Fund of the National Natural Science Foundation of China (U1460104), Scientific Research Program of Shaanxi Education Department (17JF013), Key Program of Shaanxi Province (2018ZDXM-GY-149), and Major Program of Science and Technology in Shanxi Province (No. 20181101016).

Supplementary material

11837_2019_3579_MOESM1_ESM.pdf (350 kb)
Supplementary material 1 (PDF 350 kb)

References

  1. 1.
    R.L. Klueh and A.T. Nelson, J. Nucl. Mater. 371, 37 (2007).CrossRefGoogle Scholar
  2. 2.
    Ł. Kowalczyk, W. Elsner, P. Niegodajew, and M. Marek, Appl. Therm. Eng. 96, 200 (2016).CrossRefGoogle Scholar
  3. 3.
    R. Viswanathan, K. Cpleman, and U. Rao, Int. J. Pres. Ves. Pip. 83, 778 (2006).CrossRefGoogle Scholar
  4. 4.
    F. Masuyama, ISIJ Int. 41, 612 (2001).CrossRefGoogle Scholar
  5. 5.
    J.H. Kim, B.K. Kim, D.I. Kim, P.P. Choi, D. Raabe, and K.W. Yi, Corros. Sci. 96, 52 (2015).CrossRefGoogle Scholar
  6. 6.
    N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, and H. Buscail, Appl. Surf. Sci. 254, 2292 (2008).CrossRefGoogle Scholar
  7. 7.
    V.T. Ha and W.S. Jung, Mater. Sci. Eng., A 558, 103 (2012).CrossRefGoogle Scholar
  8. 8.
    X. Zhong, S. Xia, J. Xu, and T. Shoji, J. Nucl. Mater. 511, 417 (2018).CrossRefGoogle Scholar
  9. 9.
    Q.X. Dai, Metal material science, 2nd ed. (Beijing: Chemical Industry Press, 2011), pp. 134–138.Google Scholar
  10. 10.
    S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, Appl. Surf. Sci. 274, 345 (2013).CrossRefGoogle Scholar
  11. 11.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, and J.L. Luo, Mater. Charact. 120, 273 (2016).CrossRefGoogle Scholar
  12. 12.
    H. Li, B. Zhang, Z. Jiang, S. Zhang, H. Feng, P. Han, N. Dong, W. Zhang, G. Li, G. Fan, and Q. Lin, J. Alloys Compd. 686, 326 (2016).CrossRefGoogle Scholar
  13. 13.
    M.E. Story and B.A. Webler, JOM 70, 1225 (2018).CrossRefGoogle Scholar
  14. 14.
    M.L. Lau and E.J. Lavernia, Mater. Sci. Eng., A 272, 222 (1999).CrossRefGoogle Scholar
  15. 15.
    I. Saeki, H. Konno, and R. Furuichi, Corros. Sci. 38, 19 (1996).CrossRefGoogle Scholar
  16. 16.
    Z. Oksiuta, J. Mater. Sci. 48, 4801 (2013).CrossRefGoogle Scholar
  17. 17.
    H. Fujikawa and S.B. Newcomb, Oxid. Met. 77, 85 (2012).CrossRefGoogle Scholar
  18. 18.
    M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Mazias, B.A. Pint, C.T. Liu, Z.P. Lu, and H. Be, JOM 60, 12 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Boulesteix and F. Pedraza, Surf. Coat. Tech. 339, 27 (2018).CrossRefGoogle Scholar
  20. 20.
    T. Liu, C. Wang, H. Shen, W. Chou, N.Y. Iwata, and A. Kimura, Corros. Sci. 76, 310 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Yu, S. Liu, F. Li, and T. Wang, Surf. Coat. Tech. 309, 1089 (2017).CrossRefGoogle Scholar
  22. 22.
    D.N. Zou, Y.Q. Zhou, X. Zhang, W. Zhang, and Y. Han, Mater. Charact. 136, 435 (2018).CrossRefGoogle Scholar
  23. 23.
    Y. Xu, X. Zhang, L. Fan, J. Li, X. Yu, X. Xiao, and L. Jiang, Corros. Sci. 100, 311 (2015).CrossRefGoogle Scholar
  24. 24.
    T.J. Park, J.P. Kong, S.H. Uhm, I.S. Woo, J.S. Lee, and C.Y. Kan, J. Mater. Proc. Tech. 211, 415 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y. Sun, S. Liu, E. Aghaie, Y. Zeng, M. Chmielus, W. Zheng, D. Guzonas, W. Chen, and J.L. Luo, Corros. Sci. 106, 188 (2016).CrossRefGoogle Scholar
  26. 26.
    M.R. Ardigo-Besnard, I. Popa, O. Heintza, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon, and S. Chevalier, Appl. Surf. Sci. 412, 196 (2017).CrossRefGoogle Scholar
  27. 27.
    Q.Z. Gao, X. Dong, C. Li, Z.X. Lin, X.X. Yang, and M. Dai, J. Alloys Compd. 651, 537 (2015).CrossRefGoogle Scholar
  28. 28.
    G. Fu and L. Wei, Surf. Coat. Tech. 294, 8 (2016).CrossRefGoogle Scholar
  29. 29.
    C. Wagner, J. Electrochem. Soc. 99, 369 (1952).CrossRefGoogle Scholar
  30. 30.
    M.S. Li, High temperature corrosion of metals, 1st ed. (Beijing: Metallurgical Industry Press, 2001), pp. 3–10.Google Scholar
  31. 31.
    J.G. Goedjen and D.A. Shores, Oxid. Metals 37, 125 (1992).CrossRefGoogle Scholar
  32. 32.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, and J. Luo, J. Supercrit. Fluid. 127, 191 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Rivollier, J.L. Courouau, M. Tabarant, C. Blanc, and M. Giorgi, J. Nucl. Mater. 500, 337 (2018).CrossRefGoogle Scholar
  34. 34.
    S. Swaminathan, Y.S. Lee, and D.I. Kim, J. Power Sources 327, 104 (2016).CrossRefGoogle Scholar
  35. 35.
    X. Cheng, L. Fan, H. Yin, L. Liu, K. Du, and D. Wang, Corros. Sci. 112, 54–62 (2016).CrossRefGoogle Scholar
  36. 36.
    J. Wang, S. Lu, L. Rong, D. Li, and Y. Li, Corros. Sci. 111, 13 (2016).CrossRefGoogle Scholar
  37. 37.
    F.H. Stott, G.C. Wood, and J. Stringert, Oxid. Metals. 44, 113 (1995).CrossRefGoogle Scholar
  38. 38.
    L.F. He, P. Roman, B. Leng, K. Sridharan, M. Anderson, and T.R. Allen, Corros. Sci. 82, 67 (2014).CrossRefGoogle Scholar
  39. 39.
    G.C. Wood, Oxid. Metals 2, 11 (1970).CrossRefGoogle Scholar
  40. 40.
    R. Haugsrud, Corros. Sci. 45, 211 (2003).CrossRefGoogle Scholar
  41. 41.
    A. Col, V. Parry, and C. Pascal, Corros. Sci. 114, 17 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations