Advertisement

JOM

pp 1–6 | Cite as

Effect of Roasting Characteristics of Vanadium-Rich Slag on Its Vanadium Leaching Behavior

  • Wei LiEmail author
  • Haiyan Zheng
  • Fengman Shen
Recycling Methods for Industrial Metals and Minerals
  • 33 Downloads

Abstract

The effect of the roasting characteristics of vanadium-rich slag on its vanadium leaching behavior was investigated to enable its effective utilization. Thermodynamic analysis of the sodium roasting of vanadium-rich slag was performed for the first time. The effect of the roasting temperature, roasting time, quantity of sodium carbonate (Na2CO3) added, and particle size of the raw material on the vanadium leaching was studied. The results showed that the oxidation reactions of vanadium oxides, fayalite (Fe2SiO4), and vanadium-iron spinel (FeV2O4), and the formation of sodium vanadate were feasible within the roasting temperature range. The sodium roasting was significant for the subsequent vanadium leaching process. The optimum process conditions for sodium roasting were roasting temperature of 850°C, roasting time of 60 min, Na2CO3 addition of 20%, and particle size of − 74 μm, resulting in an ideal vanadium leaching ratio. The results of the current study provide experimental evidence to establish a correlation between the roasting characteristics of vanadium-rich slag and its vanadium leaching behavior, as well as a theoretical and technical basis for effective utilization of vanadium-rich slag.

Notes

Acknowledgements

The authors gratefully acknowledge support from the Fundamental Research Funds for the Central Universities (N182503032), Postdoctoral International Exchange Program (Dispatch Project), and National Natural Science Foundation of China (51774071 and 51374061).

Supplementary material

11837_2019_3578_MOESM1_ESM.pdf (151 kb)
Supplementary material 1 (PDF 150 kb)

References

  1. 1.
    G.M. Zhang, K.Q. Feng, and H.F. Yue, JOM 68, 2525 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, JOM 69, 1646 (2017).CrossRefGoogle Scholar
  3. 3.
    Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, Hydrometallurgy 109, 116 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Mazurek, Hydrometallurgy 134, 26 (2013).CrossRefGoogle Scholar
  5. 5.
    R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).CrossRefGoogle Scholar
  6. 6.
    T. Hu, X.W. Lv, and C.G. Bai, Steel Res. Int. 87, 494 (2016).CrossRefGoogle Scholar
  7. 7.
    H.M. Long, T.J. Chun, P. Wang, Q.M. Meng, Z.X. Di, and J.X. Li, Metall. Mater. Trans. B 47, 1765 (2016).CrossRefGoogle Scholar
  8. 8.
    L.S. Zhao, L.N. Wang, T. Qi, D.S. Chen, H.X. Zhao, and Y.H. Liu, Hydrometallurgy 149, 106 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, JOM 69, 1646 (2017).CrossRefGoogle Scholar
  10. 10.
    X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).CrossRefGoogle Scholar
  11. 11.
    T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Metall. Mater. Trans. B 44, 252 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Samanta, S. Mukherjee, and R. Dey, JOM 67, 467 (2015).CrossRefGoogle Scholar
  13. 13.
    M.Y. Wang, P.F. Xian, X.W. Wang, and B.W. Li, JOM 67, 369 (2015).CrossRefGoogle Scholar
  14. 14.
    X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Trans. Nonferr. Metals Soc. China 21, 1860 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Li, H. Du, S.L. Zheng, S.N. Wang, Y. Zhang, B. Liu, A.B. Dreisinger, and Y. Zhang, JOM 69, 1970 (2017).CrossRefGoogle Scholar
  16. 16.
    G.Q. Zhang, T.A. Zhang, G.Z. Lv, Y. Zhang, Y. Liu, and W.G. Zhang, JOM 68, 577 (2016).CrossRefGoogle Scholar
  17. 17.
    M.S. Villarreal, B.I. Kharisov, L.M. Torres-Martínez, and V.N. Elizondo, Ind. Eng. Chem. Res. 38, 4624 (1999).CrossRefGoogle Scholar
  18. 18.
    R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).CrossRefGoogle Scholar
  19. 19.
    X.S. Li and B. Xie, Int. J. Miner. Metall. Mater. 19, 595 (2012).CrossRefGoogle Scholar
  20. 20.
    C.P.J.V. Vuuren and P.P. Stander, Thermochim. Acta 254, 227 (1995).CrossRefGoogle Scholar
  21. 21.
    L. Yu, Y.C. Dong, G.Z. Ye, and S.C. Du, Ironmak. Steelmak. 34, 131 (2007).CrossRefGoogle Scholar
  22. 22.
    X.Y. Chen, X.Z. Lan, Q.L. Zhang, H.Z. Ma, and J. Zhou, Trans. Nonferr. Metals Soc. China 20, 123 (2010).CrossRefGoogle Scholar
  23. 23.
    K. Yang, X.Y. Zhang, X.D. Tian, Y.L. Yang, and Y.B. Chen, Hydrometallurgy 103, 7 (2010).CrossRefGoogle Scholar
  24. 24.
    Z.W. Pan, D.W. Wang, H. Du, G. Chen, S.L. Zheng, and J. Cent, South Univ. 24, 2171 (2014).Google Scholar
  25. 25.
    X.J. Zhai, Y. Fu, X. Zhang, L.Z. Ma, and F. Xie, Hydrometallurgy 99, 189 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations