Advertisement

JOM

pp 1–9 | Cite as

Sodium-Salt-Assisted Reductive Roasting for Separation and Enrichment of Valuable Components from Lateritic Iron Ore

  • Mingxia Liu
  • Changgen Wang
  • Jun Luo
  • Mingjun RaoEmail author
  • Guanghui Li
  • Tao Jiang
Recycling Methods for Industrial Metals and Minerals
  • 49 Downloads

Abstract

The dual effect of sodium-salt-assisted reductive roasting for iron recovery and chromium enrichment from lateritic iron ore was investigated. Iron oxides were reduced to metallic iron through reductive roasting, while Al- and Si-bearing components were transformed to sodium aluminosilicate and/or diaoyudaoite. Thus, direct reduced iron (DRI) was recovered by magnetic separation, while Cr(III) element was enriched as nontoxic picotite in a Cr-bearing concentrate through sulfuric acid leaching. Na2CO3 was preferred due to its positive effect in activating Al- and Si-bearing components and contribution to good chromium enrichment. In contrast, Na2SO4 exhibited a stronger ability to improve the growth of metallic iron, resulting in better magnetic separation. Addition of Na2SO4 generally led to inferior aluminum leaching performance due to the formation of insoluble diaoyudaoite (NaAl11O17). When using combined addition of sodium salts in the optimized proportion in reductive roasting, DRI with 89.21% Fe and chromium concentrate with 40.42% Cr2O3 were obtained.

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant Nos. 51174230, 51234008 and 51804346) and Hunan Provincial Natural Science Foundation of China (No. 2019JJ50806) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11837_2019_3577_MOESM1_ESM.pdf (291 kb)
Supplementary material 1 (PDF 290 kb)

References

  1. 1.
    G. Senanayake, J. Childs, B.D. Akerstrom, and D. Pugaev, Hydrometallurgy 110, 13 (2011).CrossRefGoogle Scholar
  2. 2.
    S.S. Rath, H. Sahoo, N. Dhawan, D.S. Rao, B. Das, and B.K. Mishra, Sep. Sci. Technol. 49, 1927 (2014).CrossRefGoogle Scholar
  3. 3.
    R.G. Mcdonald and B.I. Whittington, Hydrometallurgy 91, 35 (2008).CrossRefGoogle Scholar
  4. 4.
    G.H. Li, Q. Zhou, Z.P. Zhu, J. Luo, M.J. Rao, Z.W. Peng, and T. Jiang, J. Clean. Prod. 189, 620 (2018).CrossRefGoogle Scholar
  5. 5.
    National Research Council (National Research Council of the National Academies, Washington, DC, 2008) www.nap.edu
  6. 6.
    A. Geveci, Y. Topkaya, and E. Ayhan, Miner. Eng. 15, 885 (2002).CrossRefGoogle Scholar
  7. 7.
    T. Ogura, K. Kuwayama, A. Ono, and Y. Yamada, Int. J. Miner. Process. 19, 189 (1987).CrossRefGoogle Scholar
  8. 8.
    K. Liu, Q.Y. Chen, H.P. Hu, Z.L. Yin, and B.K. Wu, Hydrometallurgy 104, 32 (2010).CrossRefGoogle Scholar
  9. 9.
    G.K. Das, N. Kelly, and D.M. Muir, Miner. Eng. 24, 594 (2011).CrossRefGoogle Scholar
  10. 10.
    G. Senanayake, A. Senaputra, and M.J. Nicol, Hydrometallurgy 105, 60 (2010).CrossRefGoogle Scholar
  11. 11.
    J.R. Bartlett, Environ. Health Perspect 92, 17 (1991).CrossRefGoogle Scholar
  12. 12.
    M. Erdem and A. Ozverdi, J. Hazard. Mater. 156, 51 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Berger and R. Frei, Geoderma 213, 521 (2014).CrossRefGoogle Scholar
  14. 14.
    B.Z. Ma, C.Y. Wang, W.J. Yang, Y.Q. Chen, and B. Yang, Int. J. Miner. Process. 124, 42 (2013).CrossRefGoogle Scholar
  15. 15.
    K.J. Sreeram and T. Ramasami, J. Environ. Monit. 3, 526 (2001).CrossRefGoogle Scholar
  16. 16.
    P.T.D.S.E. Silva, N.T.D. Mello, M.M.M. Duarte, M.C.S.S.M. Montenegro, A.N. Alberto, B.N. Barros, and V.L. Silva, J. Hazard. Mater., 128, 39 (2006)Google Scholar
  17. 17.
    R. Thirumalachari and S.K. Janardhanan, Google Patents (2007)Google Scholar
  18. 18.
    S.K. Janardhanan and R. Thirumalachari, Google Patents (2007)Google Scholar
  19. 19.
    S.Y. Liu, L. Wang, and K. Chou, Ind. Eng. Chem. Res. 55, 12962 (2016).CrossRefGoogle Scholar
  20. 20.
    T. Jiang, L. Yang, G.H. Li, J. Luo, J.H. Zeng, Z.W. Peng, and M.X. Liu, Can. Metall. Q. 55, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    G.H. Li, J. Luo, T. Jiang, Z.X. Li, Z.W. Peng, and Y.B. Zhang, Metals Basel 6, 294 (2016).CrossRefGoogle Scholar
  22. 22.
    G.H. Li, M.X. Liu, M.J. Rao, T. Jiang, J.Q. Zhuang, and Y.B. Zhang, J. Hazard. Mater. 280, 774 (2014).CrossRefGoogle Scholar
  23. 23.
    B.N. Deng, G.H. Li, J. Luo, Q. Ye, M.X. Liu, Z.W. Peng, and T. Jiang, J. Hazard. Mater. 331, 71 (2017).CrossRefGoogle Scholar
  24. 24.
    E. Vardar, R.H. Eric, and F.K. Letowski, Miner. Eng. 7, 605 (1994).CrossRefGoogle Scholar
  25. 25.
    D.L. Ye, Practical Handbook of Thermodynamical Data for Inorganic Substances (Metallurgical Industry Press, Beijing 1981) (in Chinese) Google Scholar
  26. 26.
    G. Róg and A. Kozo-Wska-Róg, Solid. State. Ionics 7, 291 (1982).CrossRefGoogle Scholar
  27. 27.
    Y.L. Li, T.C. Sun, J. Kou, Q. Guo, and C.Y. Xu, Miner. Proc. Extr. Metall. Rev. 35, 66 (2014).CrossRefGoogle Scholar
  28. 28.
    W. Yu, T.C. Sun, and Q. Cui, Int. J. Miner. Process. 133, 119 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mingxia Liu
    • 1
  • Changgen Wang
    • 1
  • Jun Luo
    • 1
  • Mingjun Rao
    • 1
    Email author
  • Guanghui Li
    • 1
  • Tao Jiang
    • 1
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina

Personalised recommendations