, Volume 71, Issue 9, pp 3012–3022 | Cite as

Suppression of Void Formation at Sn/Cu Joint Due to Twin Formation in Cu Electrodeposit

  • Shan-Ting Tsai
  • Ping-Chen Chiang
  • Chang Liu
  • Shien-Ping Feng
  • Chih-Ming ChenEmail author
Advanced Electronic Interconnection


The use of organic additives is crucial for Cu electrodeposition. However, specific impure species originating from the additives are incorporated in the Cu electroplated layer, causing serious reliability problems such as void formation at the solder/Cu joints. In this study, three Cu substrates were electroplated using various additive formulas. The use of organic additives results in an incorporation of a higher level of impurity in the Cu-electroplated layers and also affects the atomic deposition behavior of Cu which alters the grain microstructures. By using a specific additive formula, the grain growth of Cu evolves into a slender structure with a high density of twins. Thermal aging experiments of the Sn/Cu joints show that the void formation is successfully suppressed at the joint using a slender-grained Cu substrate, and that the suppression effect is attributed to the high microstructural stability of the twinning structure.



This work was financially supported by the “Innovation and Development Center of Sustainable Agriculture” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work was also financially supported by the Ministry of Science and Technology of Taiwan through Grant No. MOST-106-2221-E-005-066-MY3. The authors also thank the Lin Trading Co., Ltd. in Taiwan for kindly offering the 3D optical profiler for the topographical examination of the as-electroplated Cu layers.


  1. 1.
    J.V. Olmen, C. Huyghebaert, J. Coenen, J.V. Aelst, E. Sleeckx, A.V. Ammel, S. Armini, G. Katti, J. Vaes, and W. Dehaene, Microelectron. Eng. 88, 745 (2011).CrossRefGoogle Scholar
  2. 2.
    L. Hofmann, R. Ecke, S.E. Schulz, and T. Gessner, Microelectron. Eng. 88, 705 (2011).CrossRefGoogle Scholar
  3. 3.
    T. Moffat and D. Josell, J. Electrochem. Soc. 159, D208 (2012).CrossRefGoogle Scholar
  4. 4.
    J.J. Sun, K. Kondo, T. Okamura, S. Oh, M. Tomisaka, H. Yonemura, M. Hoshino, and K. Takahashi, J. Electrochem. Soc. 150, G355 (2003).CrossRefGoogle Scholar
  5. 5.
    W.P. Dow, M.Y. Yen, W.B. Lin, and S.W. Ho, J. Electrochem. Soc. 152, C769 (2005).CrossRefGoogle Scholar
  6. 6.
    Z.V. Feng, X. Li, and A.A. Gewirth, J. Phys. Chem. B 9415, 107 (2003).Google Scholar
  7. 7.
    J.J. Kelly and A.C. West, J. Electrochem. Soc. 145, 3472 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa, and K. Hayabusa, Electrochem. Solid State Lett. 5, C98 (2002).CrossRefGoogle Scholar
  9. 9.
    H.K. Cheng, C.W. Huang, H. Lee, Y.L. Wang, T.F. Liu, and C.M. Chen, J. Alloys Compd. 622, 529 (2015).CrossRefGoogle Scholar
  10. 10.
    C.P. Lin, C.M. Chen, and Y.W. Yen, J. Alloys Compd. 591, 297 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K. Tu, J. Appl. Phys. 97, 024508 (2005).CrossRefGoogle Scholar
  12. 12.
    Y.W. Wang, Y. Lin, and C.R. Kao, Microelectron. Reliab. 49, 248 (2009).CrossRefGoogle Scholar
  13. 13.
    C.E. Ho, T.T. Kuo, C.C. Wang, and W.H. Wu, Electron. Mater. Lett. 8, 495 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, and K. Wetzig, Microelectron. Eng. 84, 54 (2007).CrossRefGoogle Scholar
  15. 15.
    C.C. Chen, C.H. Hsieh, Y.W. Lee, C.H. Yang, and C.E. Ho, Thin Solid Films 596, 209 (2015).CrossRefGoogle Scholar
  16. 16.
    T.Y. Yu, H. Lee, H.L. Hsu, W.P. Dow, H.K. Cheng, K.C. Liu, and C.M. Chen, J. Electrochem. Soc. 163, D734 (2016).CrossRefGoogle Scholar
  17. 17.
    L.L. Lia and C.J. Yang, J. Electrochem. Soc. 164, 315 (2017).CrossRefGoogle Scholar
  18. 18.
    Y.D. Chiu and W.P. Dow, J. Electrochem. Soc. 160, D3021 (2013).CrossRefGoogle Scholar
  19. 19.
    J.Y. Wu, H. Lee, C.H. Wu, C.F. Lin, W.P. Dow, and C.M. Chen, J. Electrochem. Soc. 161, D522 (2014).CrossRefGoogle Scholar
  20. 20.
    H. Lee, T.Y. Yu, H.K. Cheng, K.C. Liu, P.F. Chan, W.P. Dow, and C.M. Chen, J. Electrochem. Soc. 164, D457 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D. Henderson, E. Cotts, and N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. Liu, L. Yin, S. Bliznakov, P. Kondos, P. Borgesen, D.W. Henderson, C. Parks, J. Wang, E.J. Cotts, N. Dimitrov, and I.E.E.E. Trans, Compon. Pack. Technol. 33, 127 (2010).CrossRefGoogle Scholar
  23. 23.
    P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, and C.E. Ho, Surf. Coat. Technol. 320, 559 (2017).CrossRefGoogle Scholar
  24. 24.
    S.W. Chen, C.M. Chen, and W.C. Liu, J. Electron. Mater. 27, 1193 (1998).CrossRefGoogle Scholar
  25. 25.
    G. Ross, V. Vuorinen, and M. Paulasto-Kröckel, J. Alloys Compd. 677, 127 (2016).CrossRefGoogle Scholar
  26. 26.
    C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 155 (2007).CrossRefGoogle Scholar
  27. 27.
    P.T. Lee, Y.S. Wu, C.Y. Lee, H.C. Liu, and C.E. Ho, J. Electrochem. Soc. 165, D647 (2018).CrossRefGoogle Scholar
  28. 28.
    F. Wafula, Y. Liu, L. Yin, P. Borgesen, E. Cotts, and N. Dimitrov, J. Appl. Electrochem. 41, 469 (2011).CrossRefGoogle Scholar
  29. 29.
    F. Wafula, L. Yin, P. Borgesen, D. Andala, and N. Dimitrov, J. Electron. Mater. 41, 1898 (2012).CrossRefGoogle Scholar
  30. 30.
    Y. Yang, H. Lu, C. Yu, and Y. Li, Microelectron. Reliab. 51, 2314 (2011).CrossRefGoogle Scholar
  31. 31.
    J. Yu and J.Y. Kim, Acta Mater. 56, 5514 (2008).CrossRefGoogle Scholar
  32. 32.
    H. Lee and C.M. Chen, Metals 8, 388 (2018).CrossRefGoogle Scholar
  33. 33.
    H.L. Hsu, H. Lee, C.W. Wang, C. Liang, and C.M. Chen, Mater. Chem. Phys. 225, 153 (2019).CrossRefGoogle Scholar
  34. 34.
    Z. Zhang, C. Jiang, P. Fu, F. Cai, and N. Ma, J. Alloys Compd. 626, 118 (2015).CrossRefGoogle Scholar
  35. 35.
    H. Lee, Y.A. Wang, and C.M. Chen, J. Alloys Compd. 765, 335 (2018).CrossRefGoogle Scholar
  36. 36.
    H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, and K.N. Tu, Science 336, 1007 (2012).CrossRefGoogle Scholar
  37. 37.
    T.C. Liu, C.M. Liu, Y.S. Huang, C. Chen, and K.N. Tu, Scr. Mater. 68, 241 (2013).CrossRefGoogle Scholar
  38. 38.
    O. Anderoglu, A. Misra, H. Wang, and X. Zhang, J. Appl. Phys. 103, 094322 (2008).CrossRefGoogle Scholar
  39. 39.
    X. Zhang, O. Anderoglu, R.G. Hoagland, and A. Misra, JOM 60, 75 (2008).CrossRefGoogle Scholar
  40. 40.
    D. Xu, V. Sriram, V. Ozolins, J.M. Yang, K.N. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech, Microelectron. Eng. 85, 2155 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Mechanical EngineeringThe University of Hong KongPok Fu LamHong Kong
  3. 3.Innovation and Development Center of Sustainable Agriculture (IDCSA)National Chung Hsing UniversityTaichungTaiwan

Personalised recommendations