Advertisement

JOM

pp 1–6 | Cite as

Titanium Recovery from Ti-Bearing Blast Furnace Slag by Alkali Calcination and Acidolysis

  • Siqi He
  • Tongjiang PengEmail author
  • Hongjuan Sun
Recycling Methods for Industrial Metals and Minerals
  • 23 Downloads

Abstract

This research mainly focuses on recovery of titanium from Ti-bearing blast furnace slag using the process of alkali calcination, water leaching, and acid hydrolysis. The Ti-bearing blast furnace slag contained approximately 24% SiO2, 12.73% Al2O3, and 20.74% TiO2. The main minerals in the slag were perovskite, diopside, and spinel. In the calcination process, the chemical products were NaAlO2, Na2SiO3, Na2CaSiO4, and Na2TiO3. In the leaching process, NaAlO2 and Na2SiO3 dissolved in water, Na2CaSiO4 remained in the water-leached product, and Na2TiO3 was hydrolyzed to an amorphous state. After alkali calcination and water leaching, 45% of SiO2 and 83% of Al2O3 were removed, while the TiO2 content increased to 36.13%. The extraction rate of titanium was 91.21% after hydrolysis by dilute sulfuric acid at 120°C for 2 h of the water-leached product, and nano-anatase TiO2 was obtained by hydrolysis and calcination of the resulting titanyl sulfate solution.

Notes

Supplementary material

11837_2019_3575_MOESM1_ESM.pdf (226 kb)
Supplementary material 1 (PDF 225 kb)

References

  1. 1.
    T. Jesionowski, A. Krysztafkiewicz, and A. Dec, Physiochem. Prob. Miner. Process. 35, 195 (2001).Google Scholar
  2. 2.
    T.A. Rahim, K. Takahashi, M. Yamada, and M. Fukumoto, Mater. Trans. 57, 1345 (2016).CrossRefGoogle Scholar
  3. 3.
    J.H. Braun, A. Baidins, and R.E. Marganski, Prog. Org. Coat. 20, 105 (1992).CrossRefGoogle Scholar
  4. 4.
    X.F. Lei, X.X. Xue, and H. Yang, Trans. Nonferrous Met. Soc. China 22, 1771 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Guéguin and F. Cardarelli, Miner. Process. Extr. Metall. Rev. 28, 1 (2007).CrossRefGoogle Scholar
  6. 6.
    F. Valighazvini, F. Rashchi, and R.K. Nekouei, Ind. Eng. Chem. Res. 52, 1723 (2013).CrossRefGoogle Scholar
  7. 7.
    X.H. Liu and Z.T. Sui, Chin. J. Nonferrous Met. 12, 1281 (2002).Google Scholar
  8. 8.
    Z.Q. Huang, M.H. Wang, X.H. Du, and Z.T. Sui, J. Mater. Sci. Technol. China 19, 191 (2003).Google Scholar
  9. 9.
    Y. Xiong, C. Li, B. Liang, and J. Xie, Chin. J. Nonferrous Met. 18, 557 (2008).Google Scholar
  10. 10.
    N.X. Fu, T.P. Lou, X.H. Du, and Z.T. Sui, J. Northeast. Univ. 33, 698 (2012).Google Scholar
  11. 11.
    Y. Peng, Titan. Ind. Prog. 22, 44 (2005).Google Scholar
  12. 12.
    T.Y. Xue, L. Wang, T. Qi, J.L. Chu, J.K. Qu, and C.H. Liu, Hydrometallurgy 95, 22 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Feng, J.G. Wang, L.N. Wang, T. Qi, T.Y. Xue, and J.L. Chu, Rare Met. 28, 564 (2009).CrossRefGoogle Scholar
  14. 14.
    Y.F. Han, T.C. Sun, J. Li, T. Qi, L.N. Wang, and J.K. Qu, Int. J. Miner. Metall. Mater. 19, 205 (2012).CrossRefGoogle Scholar
  15. 15.
    D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang, J. Hazard. Mater. 244, 588 (2013).CrossRefGoogle Scholar
  16. 16.
    Q.R. Shen, J.H. Li, T.T. Qian, Q. Zhang, and H.Y. Zhang, Acta Petrol. Mineral. 32, 889 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource RecycleSouthwest University of Science and TechnologyMianyangChina
  2. 2.Institute of Mineral Materials and ApplicationSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations