Advertisement

JOM

pp 1–14 | Cite as

Parametrically Homogenized Constitutive Models (PHCMs) for Multi-scale Predictions of Fatigue Crack Nucleation in Titanium Alloys

  • Deniz Ozturk
  • Shravan Kotha
  • Adam L. Pilchak
  • Somnath GhoshEmail author
Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • 37 Downloads

Abstract

This paper develops a bottom-up and top-down multi-scale modeling framework for predicting fatigue crack nucleation in structures of titanium alloys, e.g., Ti-7Al. A parametrically homogenized constitutive model (PHCM) and a parametrically homogenized crack nucleation model (PHCNM) are developed from computational homogenization of crystal plasticity finite element simulation results performed on microstructural statistically equivalent RVEs. Bayesian inference and machine-learning methods are employed to derive microstructure-dependent functional forms of PHCM and PHCNM coefficients. The PHCM is augmented with uncertainty quantification to account for model reduction errors and microstructural uncertainty. Macroscopic finite element models for Ti-7Al test specimens are created by matching correlation functions of microtexture in electron back-scatter diffraction scans. Nucleation hot-spots are identified by PHCNM in macroscopic simulations of stress-controlled dwell loading, then top–down microscopic simulations are performed to probe into the crack nucleation process. The computed distributions of nucleation lives and locations follow experimentally observed characteristics of the dwell effect in Ti alloys.

Abbreviations

CPFE

Crystal plasticity finite element

EBSD

Electron back-scatter diffraction

ED/TD

Extrusion and transverse directions

MTR

Micro-textured region

PHCM

Parametrically homogenized constitutive model

PHCNM

Parametrically homogenized crack nucleation model

SERVE

Statistically equivalent representative volume elements

UQ/UP

Uncertainty quantification/propagation

WATMUS

Wavelet-induced accelerated multi-timescale integration algorithm

Y.S.

Macroscopic yield strength

Notes

Acknowledgements

This work is supported through a subcontract to JHU (sub-recipient) from the Ohio State University (main recipient) through a sub-Award No. 60038238 from an AFRL Grant No. FA8650-13-2-2347 as a part of the AFRL Collaborative Center of Structural Sciences. The program managers of this grant are Dr. B. Smarslok and Dr. R. Chona, and the PI is Prof. J. McNamara. This support to JHU is gratefully acknowledged. Computer use of the Hopkins High Performance Computing facilities is gratefully acknowledged. Adam Pilchak gratefully acknowledges the support of AFOSR Task No. 12RX01COR, with program manager Dr. A. Sayir.

References

  1. 1.
    V. Sinha, J.E. Spowart, M.J. Mills, and J.C. Williams, Metall. Mater. Trans. A 37(5), 1507 (2006).CrossRefGoogle Scholar
  2. 2.
    P.O. Tympel, T.C. Lindley, E.A. Saunders, M. Dixon, and D. Dye, in Proceedindgs of 13th World Conference on Titan (Wiley, Hoboken, NJ, 2016), pp. 985–991.Google Scholar
  3. 3.
    A.L. Pilchak, A. Hutson, W.J. Porter, D. Buchanan, and R. John, in Proceedings of 13th World Conference on Titan (Wiley, Hoboken, NJ, 2016), pp. 993–998.Google Scholar
  4. 4.
    D. Ozturk, A. Pilchak, and S. Ghosh, Scr. Mater. 127, 15 (2017).CrossRefGoogle Scholar
  5. 5.
    W. Evans and M. Bache, Int. J. Fatigue 16(7), 443 (1994).CrossRefGoogle Scholar
  6. 6.
    M.E. Kassner, Y. Kosaka, and J.S. Hall, Metall. Mater. Trans. A 30(9), 2383 (1999).CrossRefGoogle Scholar
  7. 7.
    V. Doquet and V. De Greef, Int. J. Fatigue 38, 118 (2012).CrossRefGoogle Scholar
  8. 8.
    V. Sinha, M.J. Mills, and J.C. Williams, Metall. Mater. Trans. A 37(6), 2015 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Anahid, M.K. Samal, and S. Ghosh, J. Mech. Phys. Solids 59(10), 2157 (2011).CrossRefGoogle Scholar
  10. 10.
    V. Hasija, S. Ghosh, M.J. Mills, and D.S. Joseph, Acta Mater. 51(15), 4533 (2003).CrossRefGoogle Scholar
  11. 11.
    J.C. Williams, R.G. Baggerly, and N.E. Paton, Metall. Mater. Trans. A 33(3), 837 (2002).CrossRefGoogle Scholar
  12. 12.
    A.L. Pilchak and J.C. Williams, Metall. Mater. Trans. A 42(4), 1000 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Cuddihy, A. Stapleton, S. Williams, and F. Dunne, Int. J. Fatigue 97, 177 (2017).CrossRefGoogle Scholar
  14. 14.
    X. Zhang, D.J. O’Brien, and S. Ghosh, Comput. Methods Appl. Mech. Eng. 346, 456 (2019).CrossRefGoogle Scholar
  15. 15.
    S. Kotha, D. Ozturk, and S. Ghosh, Int. J. Plast. (2019).  https://doi.org/10.1016/j.ijplas.2019.05.008 Google Scholar
  16. 16.
    S. Kotha, D. Ozturk, and S. Ghosh, Int. J. Plast. (2019).  https://doi.org/10.1016/j.ijplas.2019.05.007 Google Scholar
  17. 17.
    D. Ozturk, A. Shahba, and S. Ghosh, Fatigue Fract. Eng. Mater. Struct. 39(6), 752 (2016).CrossRefGoogle Scholar
  18. 18.
    A.L. Pilchak, Scr. Mater. 74, 68 (2014).CrossRefGoogle Scholar
  19. 19.
    M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3(1), 5 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Swaminathan, S. Ghosh, and N.J. Pagano, J. Comp. Mater. 40(7), 583 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Bagri, G. Weber, J.C. Stinville, W. Lenthe, T. Pollock, C. Woodward, and S. Ghosh, Metall. Mater. Trans. A 49(11), 5727 (2018).CrossRefGoogle Scholar
  22. 22.
    M. Pinz, G. Weber, W. Lenthe, M. Uchic, T. Pollock, and S. Ghosh, Acta Mater. 157, 245 (2018).CrossRefGoogle Scholar
  23. 23.
    X. Tu, A. Shahba, J. Shen, and S. Ghosh, Int. J. Plast. 115, 268 (2019).CrossRefGoogle Scholar
  24. 24.
    D. Ozturk, S. Kotha, A.L. Pilchak, and S. Ghosh, J. Mech. Phys. Solids 128, 181 (2019).  https://doi.org/10.1016/j.jmps.2019.04.009.CrossRefGoogle Scholar
  25. 25.
    D. Deka, D.S. Joseph, S. Ghosh, and M.J. Mills, Metall. Mater. Trans. A 37(5), 1371 (2006).CrossRefGoogle Scholar
  26. 26.
    G. Venkatramani, S. Ghosh, and M. Mills, Acta Mater. 55(11), 3971 (2007).CrossRefGoogle Scholar
  27. 27.
    D.C. Pagan, P.A. Shade, N.R. Barton, J.S. Park, P. Kenesei, D.B. Menasche, and J.V. Bernier, Acta Mater. 128, 406 (2017).CrossRefGoogle Scholar
  28. 28.
    S. Ghosh and P. Chakraborty, Int. J. Fatigue 48, 231 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Keshavarz and S. Ghosh, Int. J. Solids Struct. 55, 17 (2015).CrossRefGoogle Scholar
  30. 30.
    O. Cazacu, B. Plunkett, and F. Barlat, Int. J. Plast. 22(7), 1171 (2006).CrossRefGoogle Scholar
  31. 31.
    A. Karafillis and M. Boyce, J. Mech. Phys. Solids 41(12), 1859 (1993).CrossRefGoogle Scholar
  32. 32.
    M. Schmidt and H. Lipson, Science (80-. ). 324(5923), 81 (2009)CrossRefGoogle Scholar
  33. 33.
    E. Voce, Metallurgica 51, 219 (1955).Google Scholar
  34. 34.
    S. ABAQUS/Standard, Dassault Systemes. Dassault systemes, simulia (2014). URL https://www.3ds.com/products-services/simulia/products/abaqus/.
  35. 35.
    D. Barber, in Bayesian Reasoning and Machine Learning (Cambridge: Cambridge University Press, 2012), pp. 392–411.zbMATHGoogle Scholar
  36. 36.
    J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd edn. (New York: Springer, 1985).CrossRefzbMATHGoogle Scholar
  37. 37.
    L. Isserlis, Biometrika 12(1–2), 134 (1918).CrossRefGoogle Scholar
  38. 38.
    D.S. Joseph, P. Chakraborty, and S. Ghosh, Comput. Methods Appl. Mech. Eng. 199(33–36), 2177 (2010).CrossRefGoogle Scholar
  39. 39.
    L. Toubal, P. Bocher, and A. Moreau, Int. J. Fatigue 31(3), 601 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Air Force Research Laboratory, Materials and Manufacturing DirectorateWright Patterson Air Force BaseDaytonUSA
  3. 3.Departments of Civil, Mechanical and Material Science EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations