pp 1–9 | Cite as

Deformation and Failure Mechanics of Boron Carbide–Titanium Diboride Composites at Multiple Scales

  • J. D. ClaytonEmail author
  • W. S. Rubink
  • V. Ageh
  • D. Choudhuri
  • R. Recuero Chen
  • J. Du
  • T. W. Scharf
Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification


A coupled modeling and experimental investigation of the mechanical response of a dual-phase composite ceramic is reported. The material consists of boron carbide crystals interspersed with a second phase of titanium diboride, where grains of each phase are of comparable average size. Experiments show a moderate increase in flexure strength and a significant increase in fracture toughness with increasing titanium diboride content. Density functional theory provides elastic properties, surface energy on potential cleavage planes, and stacking fault energy on potential slip systems of the second phase. Energies are found lowest on the basal plane. Findings inform mesoscale simulations of the tensile response of polycrystalline aggregates. These simulations, which invoke a phase-field theory for elasticity, limited slip, and fracture, demonstrate improvement in tensile strength with increasing fraction of titanium diboride grains, in qualitative agreement with experimental trends. Refinements are suggested that would presumably provide more accurate toughness predictions.



J. D. Clayton acknowledges support from the ARL-WMRD 6.1 FY19 Program Mesoscale Modeling of Heterogeneous Polycrystals. W. S. Rubink, V. Ageh, D. Choudhuri, R. Recuero Chen, J. Du, and T. Scharf acknowledge support from ARL under cooperative agreement W911NF-16-2-0189 with UNT. The authors also acknowledge the Materials Research Facility and the High Performance Computing Facility at UNT. T. Scharf acknowledges a Joint Faculty appointment at ARL South. Dr. J. Lloyd of ARL is thanked for facilitating this collaboration.


  1. 1.
    S. Coleman, E. Hernandez-Rivera, K. Behler, J. Synowczynski-Dunn, and M. Tschopp, JOM 68, 1605 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Chen, J. McCauley, and K. Hemker, Science 299, 1563 (2003).CrossRefGoogle Scholar
  3. 3.
    Q. An and W. Goddard, Phys. Rev. Lett. 115, 105051 (2015).Google Scholar
  4. 4.
    Y. Li, Y. Zhao, W. Liu, Z. Zhang, R. Vogt, E. Lavernia, and J. Schoenung, Philos. Mag. 90, 783 (2010).CrossRefGoogle Scholar
  5. 5.
    D. Vanderwalker and W. Croft, J. Mater. Res. 3, 761 (1988).CrossRefGoogle Scholar
  6. 6.
    L. Sigl and H.J. Kleebe, J. Am. Ceram. Soc. 78, 2374 (1995).CrossRefGoogle Scholar
  7. 7.
    R. White and E. Dickey, J. Am. Ceram. Soc. 94, 4032 (2011).CrossRefGoogle Scholar
  8. 8.
    D. Demirskyi, H. Borodianska, Y. Sakka, and O. Vasylkiv, J. Eur. Ceram. Soc. 37, 393 (2017).CrossRefGoogle Scholar
  9. 9.
    D. Taylor, J. McCauley, and T. Wright, J. Phys. Cond. Matter 24, 505402 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Beaudet, J. Smith, and J. Adams, Sol. State Commun. 219, 43 (2015).CrossRefGoogle Scholar
  11. 11.
    K. Panda and K. Chandran, Comput. Mater. Sci. 35, 134 (2006).CrossRefGoogle Scholar
  12. 12.
    L. Sun, Y. Gao, B. Xiao, Y. Li, and G. Wang, J. Alloys Compd. 579, 457 (2013).CrossRefGoogle Scholar
  13. 13.
    J. Clayton, R. Leavy, and J. Knap, Int. J. Solids Struct. 166, 183 (2019).CrossRefGoogle Scholar
  14. 14.
    G. Quinn, in Ceramic Engineering and Science Proceedings, vol. 27, ed. by R. Tandon, A. Wereszczak, and E. Lara-Curzio (Westerville: American Ceramic Society, 2007), pp. 45–62Google Scholar
  15. 15.
    M. Taya, S. Hayashi, A. Kobayashi, and H. Yoon, J. Am. Ceram. Soc. 73, 1382 (1990).CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  17. 17.
    W. Sun, V. Ageh, H. Mohseni, T. Scharf, and J. Du, Appl. Phys. Lett. 104, 241903 (2014).CrossRefGoogle Scholar
  18. 18.
    W. Sun and J. Du, Mod. Simul. Mater. Sci. Eng. 24, 065015 (2016).CrossRefGoogle Scholar
  19. 19.
    R. Munro, J. Res. Natl. Inst. Stand. Technol. 105, 709 (2000).CrossRefGoogle Scholar
  20. 20.
    V. Domnich, S. Reynaud, R. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011).CrossRefGoogle Scholar
  21. 21.
    P. Spoor, J. Maynard, M. Pan, D. Green, J. Hellmann, and T. Tanaka, Appl. Phys. Lett. 70, 1959 (1997).CrossRefGoogle Scholar
  22. 22.
    J. Clayton, Philos. Mag. 92, 2860 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Clayton, Nonlinear Mechanics of Crystals (Dordrecht: Springer, 2011).CrossRefzbMATHGoogle Scholar
  24. 24.
    J. Clayton, Int. J. Eng. Sci. 79, 1 (2014).CrossRefGoogle Scholar
  25. 25.
    X. Yang, S. Coleman, J. Lasalvia, W. Goddard, and Q. An, ACS Appl. Mater. Interfaces 10, 5072 (2018).CrossRefGoogle Scholar
  26. 26.
    J. Clayton and J. Knap, Contin. Mech. Thermodyn. 30, 421 (2018).MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Clayton and J. Knap, Physica D 240, 841 (2011).MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Clayton and J. Knap, Comput. Methods Appl. Mech. Eng. 312, 447 (2016).CrossRefGoogle Scholar
  29. 29.
    J. Clayton, Proc. R. Soc. Lond. A 465, 307 (2009).CrossRefGoogle Scholar
  30. 30.
    J. Clayton, J. Mech. Phys. Solids 53, 261 (2005).CrossRefGoogle Scholar
  31. 31.
    J. Clayton, AIP Conf. Proc. 1979, 180001 (2018).CrossRefGoogle Scholar
  32. 32.
    J. Clayton and J. Knap, Int. J. Fract. 189, 139 (2014).CrossRefGoogle Scholar
  33. 33.
    J. Clayton and J. Knap, Comp. Mater. Sci. 98, 158 (2015).CrossRefGoogle Scholar
  34. 34.
    J. Clayton and J. Knap, J. Micromech. Mol. Phys. 3, 1840001 (2018).CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Impact PhysicsUS ARLAberdeenUSA
  2. 2.Materials Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations