Advertisement

JOM

, Volume 71, Issue 9, pp 3041–3048 | Cite as

Effect of Sn Film Grain Size and Thickness on Kinetics of Spontaneous Sn Whisker Growth

  • Wen-Chih Lin
  • Tsan-Hsien Tseng
  • Wei Liu
  • Kuo-Shuo Huang
  • Hao Chen
  • Hsin-Yi Lee
  • Ching-Shun Ku
  • Albert T. WuEmail author
Advanced Electronic Interconnection
  • 35 Downloads

Abstract

The effects of the grain size and thickness of Sn films on the kinetics of spontaneous Sn whisker growth have been quantitatively analyzed separately. The results reveal that the length and diameter of the whiskers are related to the parameters of the Sn film. A thicker film has a stronger influence on the whisker morphology than does the grain size. When the biaxial stress in the film reached a steady state, the growth rate was dependent on the grain size and thickness of the film. An equation is proposed to calculate the spontaneous growth rate of Sn whiskers in correlation with the dimension and microstructure of the Sn film. Spontaneous Sn whisker growth can be suppressed by increasing the thickness and grain size of the film.

Notes

Acknowledgements

The authors thank the Ministry of Science and Technology of Taiwan for financially supporting this research under Contract MOST107-2221-E-008-004-MY3.

References

  1. 1.
    B.D. Dunn, Circuit World 2, 32 (1976).CrossRefGoogle Scholar
  2. 2.
    J.A. Brusse, G.J. Ewell, and J.P. Siplon, in Capacitor and Resistor Technology Symposium, 67 (2002).Google Scholar
  3. 3.
    E. George and M. Pecht, Microelectron. Reliab. 54, 214 (2014).CrossRefGoogle Scholar
  4. 4.
    B. Sood, M. Osterman, and M. Pecht, Circuit World 37, 4 (2011).CrossRefGoogle Scholar
  5. 5.
    K.N. Tu and K. Zeng, Mater. Sci. Eng. R Rep. 34, 1 (2001).CrossRefGoogle Scholar
  6. 6.
    S.M. Arnold, Plating 53, 96 (1966).Google Scholar
  7. 7.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.-W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).CrossRefGoogle Scholar
  8. 8.
    N. Jadhav, J. Wasserman, F. Pei, and E. Chason, J. Electron. Mater. 41, 588 (2011).CrossRefGoogle Scholar
  9. 9.
    R.M. Fisher, L.S. Darken, and K.G. Carrol, Acta Mater. 2, 368 (1954).CrossRefGoogle Scholar
  10. 10.
    G.T. Galyon and L. Palmer, IEEE Trans. Electron. Packag. Manuf. Technol. 28, 17 (2005).CrossRefGoogle Scholar
  11. 11.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  12. 12.
    G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, and L. Nguyen, J. Appl. Phys. 92, 64 (2002).CrossRefGoogle Scholar
  13. 13.
    K.N. Tu and J.C.M. Li, Mater. Sci. Eng. A 409, 131 (2005).CrossRefGoogle Scholar
  14. 14.
    A. He and D.G. Ivey, J. Mater. Sci. 50, 2944 (2015).CrossRefGoogle Scholar
  15. 15.
    K.S. Kim, C.H. Yu, S.W. Han, K.C. Yang, and J.H. Kim, Microelectron. Reliab. 48, 111 (2008).CrossRefGoogle Scholar
  16. 16.
    K.N. Tu, Acta Mater. 21, 347 (1973).CrossRefGoogle Scholar
  17. 17.
    K.N. Tu, Phys. Rev. B 49, 2030 (1994).CrossRefGoogle Scholar
  18. 18.
    M.A. Ashworth, G.D. Wilcox, R.L. Higginson, R.J. Heath, C. Liu, and R.J. Mortimer, Microelectron. Reliab. 55, 180 (2015).CrossRefGoogle Scholar
  19. 19.
    L. Sauter, A. Seekamp, Y. Shibata, Y. Kanameda, and H. Yamashita, Microelectron. Reliab. 50, 1631 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Chen, H.Y. Lee, C.S. Ku, and A.T. Wu, J. Mater. Sci. 51, 3600 (2016).CrossRefGoogle Scholar
  21. 21.
    W.H. Chen, P. Sarobol, C.A. Handwerker, and J.E. Blendell, JOM 68, 2888 (2016).CrossRefGoogle Scholar
  22. 22.
    A.T. Wu and Y.C. Ding, Microelectron. Reliab. 49, 318 (2009).CrossRefGoogle Scholar
  23. 23.
    C.H. Su, H. Chen, H.Y. Lee, and A.T. Wu, Appl. Phys. Lett. 99, 131906 (2011).CrossRefGoogle Scholar
  24. 24.
    C.H. Su, H. Chen, H.Y. Lee, C.Y. Liu, C.S. Ku, and A.T. Wu, J. Electron. Mater. 43, 3290 (2014).CrossRefGoogle Scholar
  25. 25.
    M. Sobiech, U. Welzel, R. Schuster, E.J. Mittemeijer, W. Hugel, A. Seekamp, and V. Muller, in ECTC’07, 192 (2007).Google Scholar
  26. 26.
    P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, Acta Mater. 134, 346 (2017).CrossRefGoogle Scholar
  27. 27.
    F. Pei, N. Jadhav, E. Buchovecky, A.F. Bower, E. Chason, W. Liu, J.Z. Tischler, G.E. Ice, and R. Xu, J. Appl. Phys. 119, 105302 (2016).CrossRefGoogle Scholar
  28. 28.
    P. Jagtap, V.A. Sethuraman, and P. Kumar, J. Electron. Mater. 47, 5229 (2018).CrossRefGoogle Scholar
  29. 29.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Prog. Surf. Sci. 88, 103 (2013).CrossRefGoogle Scholar
  30. 30.
    J. Hektor, S.A. Hall, N.A. Henningsson, J. Engqvist, M. Ristinmaa, F. Lenrick, and J.P. Wright, Materials 12, 446 (2019).CrossRefGoogle Scholar
  31. 31.
    M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hugel, and A. Seekamp, Appl. Phys. Lett. 93, 011906 (2008).CrossRefGoogle Scholar
  32. 32.
    K.N. Tu, J.O. Suh, A.T.C. Wu, N. Tamura, and C.H. Ting, Mater. Trans. 46, 2300 (2005).CrossRefGoogle Scholar
  33. 33.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Prog. Surf. Sci. 88, 103 (2013).CrossRefGoogle Scholar
  34. 34.
    H.J. Kao, W.C. Wu, S.T. Tsai, and C.Y. Liu, J. Electron. Mater. 35, 1885 (2006).CrossRefGoogle Scholar
  35. 35.
    K.S. Kim, S.S. Kim, Y. Yorikado, K. Suganuma, M. Tsujimoto, and I. Yanada, J. Alloys Compd. 558, 125 (2013).CrossRefGoogle Scholar
  36. 36.
    S.H. Na, M.R. Lee, H.S. Park, H.K. Kim, and S.J. Suh, Met. Mater. Int. 20, 367 (2014).CrossRefGoogle Scholar
  37. 37.
    H.X. Lee, K.Y. Chan, and M. Hamdi, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan CityTaiwan
  2. 2.National Synchrotron Radiation Research CenterHsinchu CityTaiwan

Personalised recommendations