, Volume 71, Issue 9, pp 3049–3056 | Cite as

Rapid Formation of Full Intermetallic Bondlines for Die Attachment in High-Temperature Power Devices Based on Micro-sized Sn-Coated Ag Particles

  • Fuwen Yu
  • Hao Liu
  • Chunjin HangEmail author
  • Hongtao ChenEmail author
  • Mingyu Li
Advanced Electronic Interconnection


A new die attach material prepared by pressing micro-sized Sn-coated Ag powders as a preform is proposed for high-temperature power device packaging. The Sn-coated Ag powders were completely transformed into Ag3Sn with a melting point of 480°C after bonding at 250°C for 10 min, subsequently producing a bondline which can sustain a much higher temperature than the processing temperature. The detailed microstructural analysis indicates that a fine-grained full Ag3Sn bondline with high-density twin boundaries can be formed in a short reflow time, which contributes to the improved performance of the full Ag3Sn bondline, with an average shear strength of 37.5 MPa at 400°C. Nano-indentation testing showed that the average hardness and elasticity modulus of the prepared full Ag3Sn bondline were 3.1 ± 0.26 GPa and 84.56 ± 6.13 GPa, respectively. The electrical resistivity was measured to be 11.42 μΩ cm. The shear strength at 400°C was kept above 20 MPa after aging at 200°C for 200 h due to the thermostability of Ag3Sn microstructure in the bondlines.



This work is financially supported by the Science and Technology Project of Shenzhen (No. JCYJ20160318095308401).


  1. 1.
    L.A. Navarro, X. Perpiñà, P. Godignon, J. Montserrat, V. Banu, and M. Vellvehi, IEEE Trans. Power Electron. 29, 2261 (2014).CrossRefGoogle Scholar
  2. 2.
    V. Chidambaram, J. Hald, and J. Hattel, J. Alloys Compd. 490, 170 (2010).CrossRefGoogle Scholar
  3. 3.
    J.P.M. Clech, R.J. Coyle, and B. Arfaei, JOM 71, 143 (2019).CrossRefGoogle Scholar
  4. 4.
    A.M. Yassin, H.Y. Zahran, and A.A. El-Rehim, J. Electr. Mater. 47, 6984 (2018).CrossRefGoogle Scholar
  5. 5.
    F. Wang, H. Chen, Y. Huang, and C. Yan, J. Mater. Sci. Mater. Electron. 29, 11409 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Li, Y. Xiao, Z. Zhang, and J. Yu, ACS Appl. Mater. Interfaces 7, 9157 (2015).CrossRefGoogle Scholar
  7. 7.
    W. Guo, H. Zhang, X. Zhang, L. Liu, P. Peng, G. Zou, and Y.N. Zhou, J. Alloys Compd. 690, 86 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Liu, H. Chen, H. Ji, and M. Li, ACS Appl. Mater. Interfaces 8, 33289 (2016).CrossRefGoogle Scholar
  9. 9.
    J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 58, 3429 (2010).CrossRefGoogle Scholar
  10. 10.
    H.Y. Zhao, J.H. Liu, Z.L. Li, Y.X. Zhao, H.W. Niu, and X.G. Song, Mater. Lett. 186, 283 (2017).CrossRefGoogle Scholar
  11. 11.
    B. Liu, Y. Tian, C. Wang, R. An, and Y. Liu, J. Alloys Compd. 687, 667 (2016).CrossRefGoogle Scholar
  12. 12.
    F. Lang, H. Yamaguchi, H. Nakagawa, and H. Sato, J. Electrochem. Soc. 160, D315 (2013).CrossRefGoogle Scholar
  13. 13.
    F. Yu, B. Wang, Q. Guo, X. Ma, M. Li, and H. Chen, Adv. Eng. Mater. 20, 1700524 (2018).CrossRefGoogle Scholar
  14. 14.
    X. Liu, S. He, and H. Nishikawa, Scr. Mater. 110, 101 (2016).CrossRefGoogle Scholar
  15. 15.
    T. Hu, H. Chen, M. Li, and C. Wang, Mater. Des. 131, 196 (2017).CrossRefGoogle Scholar
  16. 16.
    P.J. Rossi, N. Zotov, E. Bischoff, and E.J. Mittemeijer, Acta Mater. 103, 174 (2016).CrossRefGoogle Scholar
  17. 17.
    B.S. Lee and J.W. Yoon, J. Electr. Mater. 47, 430 (2018).CrossRefGoogle Scholar
  18. 18.
    H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, and L. Liu, Mater. Sci. Eng. A 724, 231 (2018).CrossRefGoogle Scholar
  19. 19.
    H.H. Hsu, S.Y. Huang, T.C. Chang, and A.T. Wu, Appl. Phys. Lett. 99, 251913 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Wang, M. Li, H. Ji, and C. Wang, Scr. Mater. 69, 789 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Yu, Y. Sun, W.R. Meier, P.C. Canfield, C.R. Weinberger, S.W. Lee, and M. Aindow, J. Mater. Sci. 53, 5317 (2018).CrossRefGoogle Scholar
  22. 22.
    J. Abbott, D. Miller, and D. Netherway, J. Biomed. Mater. Res. 16, 535 (1982).CrossRefGoogle Scholar
  23. 23.
    I.N. Bakst, H. Yu, M. Bahadori, H. Yu, S.W. Lee, M. Aindow, and C.R. Weinberger, Int. J. Plast. 110, 57 (2018).CrossRefGoogle Scholar
  24. 24.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).CrossRefGoogle Scholar
  25. 25.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  26. 26.
    R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, J. Mater. Res. 18, 2251 (2003).CrossRefGoogle Scholar
  27. 27.
    X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).CrossRefGoogle Scholar
  28. 28.
    Y. Bao, A. Wu, H. Shao, Y. Zhao, L. Liu, and G. Zou, J. Mater. Sci. 54, 765 (2019).CrossRefGoogle Scholar
  29. 29.
    G. Ghosh, J. Mater. Res. 19, 1439 (2004).CrossRefGoogle Scholar
  30. 30.
    F.X. Che and J.H. Pang, J. Alloys Compd. 541, 6 (2012).CrossRefGoogle Scholar
  31. 31.
    J.L. Hay and G.M. Pharr, ASM Handbook, vol. 8, eds. H. Kuhn and D. Medlin (ASM International, Materials Park, 1990), p. 232.Google Scholar
  32. 32.
    F.M. Smits, Bell Syst. Tech. J. 37, 711 (1958).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringHarbin Institute of Technology at ShenzhenShenzhenChina
  2. 2.Beijing Santel Technology & Trading Corp.BeijingChina
  3. 3.State Key Lab of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina

Personalised recommendations