Advertisement

JOM

pp 1–7 | Cite as

Synthesis of Fibrous Cobalt Oxalate by a Double-Jet Process: Morphology and Growth Control

  • Zhiyong LiuEmail author
  • Huan Ma
  • Zhihong Liu
Technical Article
  • 11 Downloads

Abstract

Cobalt oxalate particles with a fibrous shape were prepared by a double-jet process with CoCl2 solution and (NH4)2C2O4 + NH3·H2O solution. The formation mechanism of the fibrous cobalt oxalate and the effects of temperature, pH value, feeding rate, ion concentration and PVP25 addition on the particle morphology and particle size were studied in this work. There were two kinds of cobalt oxalate precipitations in the Co2+-NH3-C2O42−-H2O system. When free ammonia was sufficient in this system, C2O42− and Co(NH3) n 2+ (n = 1,2,…,6) would combine to form fibrous Co(NH3)1.5C2O4·2H2O precipitation, otherwise square columnar β-CoC2O4·2H2O formed. The changes in nucleation and growth supersaturation had a great effect on particle morphology and size. The fibrous morphology of cobalt oxalate was formed by the Ostwald ripening mechanism.

Notes

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 51404307).

References

  1. 1.
    J.H. Adair and E. Suvaci, Curr. Opin. Colloid Interface Sci. (2000).  https://doi.org/10.1016/S1359-0294(00)00049-2.Google Scholar
  2. 2.
    V. Kumar and D.-J. Lee, J. Magn. Magn. Mater. (2017).  https://doi.org/10.1016/j.jmmm.2017.05.049.Google Scholar
  3. 3.
    S. Sarkar and R. Das, J. Lumin. (2018).  https://doi.org/10.1016/j.jlumin.2018.02.069.Google Scholar
  4. 4.
    Y. Ido, H. Nishida, Y. Iwamoto, and H. Yokoyama, J. Magn. Magn. Mater. (2017).  https://doi.org/10.1016/j.jmmm.2016.10.015.Google Scholar
  5. 5.
    J.F. Slack, B.E. Kimball, K.B. Shedd, “Cobalt” (U.S. Geological Survey, 2017). https://pubs.er.usgs.gov/publication/pp1802F. Accessed 19 Dec 2017
  6. 6.
    D.K. Shetty, I.G. Wright, P.N. Mincer, and A.H. Clauer, J. Mater. Sci. (1985).  https://doi.org/10.1007/BF00555296.Google Scholar
  7. 7.
    N.A. Skulkina, O.A. Ivanov, E.A. Stepanova, L.N. Shubina, P.A. Kuznetsov, and A.K. Mazeeva, Phys. Met. Metallogr. (2015).  https://doi.org/10.1134/S0031918X1512011X.Google Scholar
  8. 8.
    K. Zhang, J. Liu, B. Bao, and H. Xu, Surf. Interface Anal. (2018).  https://doi.org/10.1002/sia.6389.Google Scholar
  9. 9.
    J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, and D. Wang, Angew. Chem. Int. Ed. Engl. (2013).  https://doi.org/10.1002/anie.201301622.Google Scholar
  10. 10.
    C. Yan, G. Chen, X. Zhou, J. Sun, and C. Lv, Adv. Funct. Mater. (2016).  https://doi.org/10.1002/adfm.201504695.Google Scholar
  11. 11.
    K. Young and S. Yasuoka, Batteries (Basel, Switz.) (2016).  https://doi.org/10.3390/batteries2010003.Google Scholar
  12. 12.
    S. Mishra, P. Yogi, S. Saxena, S. Roy, P.R. Sagdeo, and R. Kumar, Adv. Mater. Process. Technol. (2017).  https://doi.org/10.1080/2374068X.2017.1351282.Google Scholar
  13. 13.
    T. Ling, D.-Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X.-W. Du, Z. Hu, M. Jaroniec, and S.-Z. Qiao, Nat. Commun. (2016).  https://doi.org/10.1038/ncomms12876.Google Scholar
  14. 14.
    G.-S. Jang, S. Ameen, M.S. Akhtar, E. Kim, and H.-S. Shin, ChemistrySelect (2017).  https://doi.org/10.1002/slct.201701571.Google Scholar
  15. 15.
    M. Ibrahim, C. Marcelot-Garcia, K. Aït Atmane, E. Berrichi, L.-M. Lacroix, A. Zwick, B. Warot-Fonrose, S. Lachaize, P. Decorse, J.-Y. Piquemal, and G. Viau, J. Phys. Chem. C (2013).  https://doi.org/10.1021/jp3125457.Google Scholar
  16. 16.
    C. An, G. Liu, Y. Wang, L. Li, F. Qiu, Y. Xu, C. Xu, Y. Wang, L. Jiao, and H. Yuan, RSC Adv. (2013).  https://doi.org/10.1039/C3RA42080A.Google Scholar
  17. 17.
    B.M. Abu-Zied, S.M. Bawaked, S.A. Kosa, and W. Schwieger, Appl. Surf. Sci. (2013).  https://doi.org/10.1016/j.apsusc.2015.05.151.Google Scholar
  18. 18.
    B.C. Kim, M. Rajesh, H.S. Jang, K.H. Yu, S.-J. Kim, S.Y. Park, and C.J. Raj, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2016.03.028.Google Scholar
  19. 19.
    Y. Wu, X. Yin, Q. Zhang, W. Wang, and X. Mu, Resour. Conserv. Recycl. (2014).  https://doi.org/10.1016/j.resconrec.2014.04.007.Google Scholar
  20. 20.
    J.E. Jeon, H.S. Han, K.R. Park, Y.-R. Hong, K.B. Shim, and S. Mhin, Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2017.09.231.Google Scholar
  21. 21.
    S. Kumar, T.J. Shinde, P.N. Vasambekar, and K. Bhatt, IEEE Trans. Magn. (2015).  https://doi.org/10.1109/TMAG.2014.2362884?src=document.Google Scholar
  22. 22.
    D. Huo, G. Baldinozzi, D. Siméone, H. Khodja, and S. Surblé, Solid State Ionics (2016).  https://doi.org/10.1016/j.ssi.2016.10.019.Google Scholar
  23. 23.
    T. Okamoto, R. Ichino, M. Okido, Z. Liu, and C. Zhang, Mater. Trans. (2005).  https://doi.org/10.2320/matertrans.46.171.Google Scholar
  24. 24.
    F. Chen, S. Peng, W. Fang, H. Liu, T. Dong, and H. Yin, Powder Metall. Technol. (2015).  https://doi.org/10.19591/j.cnki.cn11-1974/tf.2015.06.010.Google Scholar
  25. 25.
    T. Li, Y. Liu, and G. Ma, Rare Met. Mater. Eng. (2017).  https://doi.org/10.1016/S1875-5372(17)30199-6.Google Scholar
  26. 26.
    T. Li, Y. Liu, and G. Ma, Rare Met. Mater. Eng. (2016).  https://doi.org/10.1016/S1875-5372(16)30120-5.Google Scholar
  27. 27.
    Y. Ma, E. Lu, J. Zhan, and H. Liu, Min. Metall. Eng. (2017).  https://doi.org/10.3969/j.issn.0253-6099.2017.04.029.Google Scholar
  28. 28.
    Z. Liu, Z. Liu, Q. Li, T. Yang, and D. Zhang, Mater. Chem. Phys. (2011).  https://doi.org/10.1016/j.matchemphys.2011.07.070.Google Scholar
  29. 29.
    G. Madras and B.J. McCoy, Chem. Eng. Sci. (2004).  https://doi.org/10.1016/j.ces.2004.03.022.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations