Advertisement

JOM

, Volume 71, Issue 9, pp 2959–2965 | Cite as

Heating Mechanism of High Aluminum Fly Ash Activated by Na2CO3 in Microwave Field

  • Baocheng Zhou
  • Junwen Zhou
  • Libo Zhang
  • Tu HuEmail author
  • Li Yang
  • Guo Lin
Aluminum: Recycling and Environmental Footprint
  • 50 Downloads

Abstract

The microwave-absorption capabilities of high-alumina fly ash (HAFA), Na2CO3 and HAFA–Na2CO2 mixtures were investigated by determining the dielectric properties [real part (ε′), imaginary part (ε″) and dielectric loss tangent (tan δ)] from 25°C to 800°C, using the microwave resonant cavity technique at a microwave frequency of 2450 MHz. The mass ratio of the HAFA–Na2CO3 mixtures used in all experiments was 1:1. The study found that the microwave absorption capabilities of HAFA alone do not change significantly within the range of temperatures examined. For both Na2CO3 and HAFA–Na2CO3 mixtures, however, a sharp increase in absorption capability was observed above 400°C. The microwave heating behavior of the HAFA–Na2CO3 mixtures can be divided into two stages: in the first stage (< 350°C), heating rates were found to be lower due to the weaker microwave absorption capability of the HAFA and Na2CO3; however, in the second stage (≥ 350°C), a sharp increase in heating rate was observed, linked to the strengthened absorption capability of the Na2CO3. The study found that HAFA–Na2CO3 mixtures have a good microwave-absorption ability and can be heated rapidly by microwaves; therefore, it is feasible to use microwave heating for the activation of high-alumina fly ash with Na2CO3.

Notes

Acknowledgements

The authors are grateful for the financial support by the National Key R& D Program of China (No. 2017YFB0603101) and the National Natural Science Foundation of China (51764034).

Supplementary material

11837_2019_3535_MOESM1_ESM.pdf (239 kb)
Supplementary material 1 (PDF 238 kb)

References

  1. 1.
    Z.T. Yao, M.S. Xia, P.K. Sarker, and T. Chen, Fuel 120, 75 (2014).CrossRefGoogle Scholar
  2. 2.
    R. Ji, Z. Zhang, C. Yan, M. Zhu, and Z. Li, Constr. Build. Mater. 114, 890 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Xie, Z. Wang, D. Wu, and H. Kong, Fuel 116, 73 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Liu, Y. Dong, X. Dong, S. Hampshire, L. Zhu, Z. Zhu, and L. Li, J. Eur. Ceram. Soc. 36, 1065 (2016).Google Scholar
  5. 5.
    Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, and Y.Q. Xi, Earth-Sci. Rev. 141, 111 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Derkowski, W. Franus, E. Beran, and A. Czimerova, Powder Technol. 166, 50 (2006).CrossRefGoogle Scholar
  7. 7.
    A.K.H. Kwan and J.J. Chen, Powder Technol. 234, 20 (2013).CrossRefGoogle Scholar
  8. 8.
    M. Zhai, L. Guo, L. Sun, Y. Zhang, P. Dong, and W. Shi, Powder Technol. 305, 561 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Zhu, R. Ji, Z. Li, H. Wang, L.L. Liu, and Z. Zhang, Constr. Build. Mater. 112, 402 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Ansari, A. Aroujalian, A. Raisi, B. Dabir, and M. Fathizadeh, Adv. Powder Technol. 25, 725 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Erol, S. Kucukbayrak, and A. Ersoymericboyu, J. Hazard. Mater. 153, 422 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Erol, S. Kucukbayrak, and A. Ersoy-Mericboyu, Fuel 87, 1338 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Izquierdo and X. Querol, Int. J. Coal Geol. 94, 60 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Jain, C. Khatri, and A. Rani, Fuel Process. Technol. 91, 1018 (2010).CrossRefGoogle Scholar
  15. 15.
    V.C. Pandey and N. Singh, Agric. Ecosyst. Environ. 136, 24 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Zhang, N. Wang, J. Zhou, J. Ping, and G. Liu, J. Hazard. Mater. 201, 70 (2012).Google Scholar
  17. 17.
    L. Qi and Y. Yuan, J. Hazard. Mater. 192, 223 (2011).Google Scholar
  18. 18.
    S. Dai, L. Zhao, S. Peng, C.L. Chou, X. Wang, Y. Zhang, D. Li, and Y. Sun, Int. J. Coal Geol. 81, 321 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. Guo, Y. Li, F. Cheng, M. Wang, and X. Wang, Fuel Process. Technol. 110, 117 (2013).CrossRefGoogle Scholar
  20. 20.
    R.H. Matjie, J.R. Bunt, and J.H.P.V. Heerden, Miner. Eng. 18, 306 (2005).Google Scholar
  21. 21.
    H. Darvishi, M. Azadbakht, A. Rezaeiasl, and A. Farhang, J. Saudi Soc. Agric. Sci. 12, 125 (2013).Google Scholar
  22. 22.
    C.A. Crane, M.L. Pantoya, B.L. Weeks, and M. Saed, Powder Technol. 256, 116 (2014).CrossRefGoogle Scholar
  23. 23.
    Z. Wu, E.C. Gaudino, L. Rotolo, J. Medlock, W. Bonrath, and G. Cravotto, Chem. Eng. Process. 110, 223 (2016).CrossRefGoogle Scholar
  24. 24.
    A.F. Aguilera, P. Tolvanen, K. Eränen, S. Leveneur, and T. Salmi, Chem. Eng. Process. 102, 84 (2016).CrossRefGoogle Scholar
  25. 25.
    G. Lin, L. Zhang, L. Yang, T. Hu, and J. Peng, Green Process. Synth. 5, 60 (2016).Google Scholar
  26. 26.
    Q. Gao, H. Liu, C. Cheng, K. Li, J. Zhang, C. Zhang, and Y. Li, Powder Technol. 249, 236 (2013).Google Scholar
  27. 27.
    J. Kuang, W. Cao, and S. Elder, Synthesis of α-SiC particles at 1200°C by microwave heating. Powder Technol. 247, 108 (2013).CrossRefGoogle Scholar
  28. 28.
    M.P. And and K.J. Rao, Chem. Mater. 15, 2250 (2003).Google Scholar
  29. 29.
    T. Ebadzadeh, J. Alloys Compd. 489, 127 (2010).CrossRefGoogle Scholar
  30. 30.
    Y. Fang, J. Cheng, and D.K. Agrawal, Mater. Lett. 58, 499 (2004).Google Scholar
  31. 31.
    F. Satoru, I. Makoto, and H. Takashi, J. Am. Ceram. Soc. 83, 2086 (2010).Google Scholar
  32. 32.
    M. Oghbaei and O. Mirzaee, J. Alloys Compd. 41, 184 (2010).Google Scholar
  33. 33.
    J.H. Booske, R.F. Cooper, S.A. Freeman, K.I. Rybakov, and V.E. Semenov, Phys. Plasmas 5, 1668 (1998).CrossRefGoogle Scholar
  34. 34.
    S.A. Freeman, J.H. Booske, and R.F. Cooper, Phys. Rev. Lett. 74, 2042 (1995).CrossRefGoogle Scholar
  35. 35.
    M.A. Janney, H.D. Kimrey, W.R. Allen, and J.O. Kiggans, J. Mater. Sci. 32, 1350 (1997).CrossRefGoogle Scholar
  36. 36.
    N. Liu, J. Peng, L. Zhang, S. Wang, S. Huang, and S. He, J. Residuals Sci. Technol. 13, S186 (2016).CrossRefGoogle Scholar
  37. 37.
    Z.Y. Zhang, X.C. Qiao, and J.G. Yu, Fuel Process. Technol. 134, 308 (2015).Google Scholar
  38. 38.
    G. Lin, T. Hu, C. Liu, L. Zhang, J. Peng, and L. Yang, Arab. J. Sci. Eng. 43, 2330 (2017).Google Scholar
  39. 39.
    J.H. Jung, J.H. Cho, and S.Y. Kim, Meas. Sci. Technol. 27, 015011 (2016).CrossRefGoogle Scholar
  40. 40.
    V. Kresalek and M. Navratil, Microw. Opt. Technol. Lett. 57, 1544 (2015).CrossRefGoogle Scholar
  41. 41.
    P.M. Meaney, A.P. Gregory, J. Seppala, and T. Lahtinen, Microw. Theory Technol. 64, 920 (2016).Google Scholar
  42. 42.
    A. Vepsalainen, K. Chalapat, and G.S. Paraoanu, IEEE Trans. Instrum. Meas. 62, 2507 (2013).CrossRefGoogle Scholar
  43. 43.
    M. Ikeda, T. Fukunaga, and T. Miura, in 2003 IEEE MTT-S International Microwave Symposium Digest, vol. 1425, pp. 1–3 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Baocheng Zhou
    • 1
    • 2
    • 3
  • Junwen Zhou
    • 1
    • 2
    • 3
  • Libo Zhang
    • 1
    • 2
    • 3
  • Tu Hu
    • 1
    • 2
    • 3
    Email author
  • Li Yang
    • 1
    • 2
    • 3
  • Guo Lin
    • 1
    • 2
    • 3
  1. 1.Yunnan Provincial Key Laboratory of Intensification MetallurgyKunming University of Science and TechnologyKunmingChina
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina
  3. 3.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations