Advertisement

JOM

, Volume 71, Issue 7, pp 2353–2359 | Cite as

Effects of Temperature on Relaxation Time and Electrical Conductivity of Spent Automobile Catalyst at Microwave Frequencies

  • Guangjun He
  • Wenwen Qu
  • Shaohua Ju
  • Chenhui Liu
  • Peng Liu
  • Shixing WangEmail author
  • Libo ZhangEmail author
Urban Mining: Characterization and Recycling of Solid Wastes
  • 32 Downloads

Abstract

Dielectric properties are some of the main parameters of materials, determining their interaction with electromagnetic energy during microwave heating. The dielectric properties of spent automobile catalyst were measured by using the resonance cavity perturbation technique from room temperature to 800°C at 915 MHz and 2450 MHz. The effects of temperature and frequency on the dielectric constant, dielectric loss factor, loss tangent, and penetration depth were studied. The results indicate that spent automobile catalyst is weakly polar, making it difficult to transform electromagnetic energy into heat. The relaxation time and conductivity obtained by numerical calculations further explain from the microlevel that spent automobile catalyst cannot dissipate electromagnetic energy through dipole loss or conduction loss under microwave irradiation. This work describes an effective way to explore the dielectric heating mechanism and a basis for understanding the interactions between microwaves and spent automobile catalyst.

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 51664037, U1402274, and 51504217).

Supplementary material

11837_2019_3524_MOESM1_ESM.pdf (220 kb)
Supplementary material 1 (PDF 220 kb)

References

  1. 1.
    R.M. Heck and R.J. Farrauto, Appl. Catal. A Gen. 221, 443 (2001).CrossRefGoogle Scholar
  2. 2.
    D. Jimenez de Aberasturi, R. Pinedo, I. Ruiz de Larramendi, J.I. Ruiz de Larramendi, and T. Rojo, Miner. Eng. 24, 505 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Dong, J. Zhao, J. Chen, Y. Wu, and B. Li, Int. J. Miner. Process. 145, 108 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Wang and X. Li, Procedia Eng. 45, 1004 (2012).CrossRefGoogle Scholar
  5. 5.
    C. Kim, S.I. Woo, and S.H. Jeon, Ind. Eng. Chem. Res. 39, 1185 (2000).CrossRefGoogle Scholar
  6. 6.
    D. Jafarifar, M.R. Daryanavard, and S. Sheibani, Hydrometallurgy 78, 166 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Suoranta, O. Zugazua, M. Niemelä, and P. Perämäki, Hydrometallurgy 154, 56 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Wang, A. Chen, Z. Zhang, and J. Peng, Environ. Prog. Sustain. 33, 903 (2014).Google Scholar
  9. 9.
    A. Chen, S. Wang, L. Zhang, and J. Peng, Int. J. Miner. Process. 143, 18 (2015).CrossRefGoogle Scholar
  10. 10.
    P.D. Muley and D. Boldor, Bioresour. Technol. 127, 165 (2013).CrossRefGoogle Scholar
  11. 11.
    G. He, Sh Li, K. Yang, J. Liu, P. Liu, L. Zhang, and J. Peng, Minerals 7, 31 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, E. Li, J. Zhang, C. Yu, H. Zheng, and G. Guo, Rev. Sci. Instrum. 89, 024701 (2018).CrossRefGoogle Scholar
  13. 13.
    S. Ryynänen, J. Food Eng. 26, 409 (1995).CrossRefGoogle Scholar
  14. 14.
    E.T. Thostenson and T.W. Chou, Compos. Part A Appl. S. 30, 1055 (1999).CrossRefGoogle Scholar
  15. 15.
    H. Luo, Y. Tan, Y. Li, P. Xiao, L. Deng, S. Zeng, G. Zhang, H. Zhang, X. Zhou, and S. Peng, J. Eur. Ceram. Soc. 37, 1961 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Fan, L. Wang, N. Zhang, L. Xiong, L. Huang, J. Zhao, M. Wang, and H. Zhang, Sci. Rep. 7, 3967 (2017).CrossRefGoogle Scholar
  17. 17.
    B.D. Roebuck, S.A. Goldblith, and W.B. Westphal, J. Food Sci. 37, 199 (2010).CrossRefGoogle Scholar
  18. 18.
    Z. Peng, X. Lin, X. Wu, J.Y. Hwang, B.G. Kim, Y. Zhang, G. Li, and T. Jiang, Fuel Process. Technol. 150, 58 (2016).CrossRefGoogle Scholar
  19. 19.
    W.E. Pace, W.B. Westphal, and S.A. Goldblith, J. Food Sci. 33, 30 (1968).CrossRefGoogle Scholar
  20. 20.
    B.D. Roebuck, S.A. Goldblith, and W.B. Westphal, J. Food Sci. 37, 199 (1972).CrossRefGoogle Scholar
  21. 21.
    D. Luan, J. Tang, F. Liu, Z. Tang, F. Li, H. Lin, and B. Stewart, J. Food Eng. 161, 40 (2015).CrossRefGoogle Scholar
  22. 22.
    A.P. Franco, L.Y. Yamamoto, C.C. Tadini, and J.A.W. Gut, J. Food Eng. 155, 69 (2015).CrossRefGoogle Scholar
  23. 23.
    A.C. Metaxas and R.J. Meredith, Industrial Microwave Heating (Stevenage: The Institution of Engineering and Technology, 2008).Google Scholar
  24. 24.
    A. Laybourn, J. Katrib, P.A. Palade, T.L. Easun, N.R. Champness, M. Schroder, and S.W. Kingman, Phys. Chem. Chem. Phys. 18, 5419 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Tripathi, J.N. Sahu, P. Ganesan, P. Monash, and T.K. Dey, J. Anal. Appl. Pyrol. 112, 306 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Cao, W. Song, Z. Hou, B. Wen, and J. Yuan, Carbon 48, 788 (2010).CrossRefGoogle Scholar
  27. 27.
    Y. Mu, W. Zhou, Y. Hu, H. Wang, F. Luo, D. Ding, and Y. Qing, J. Eur. Ceram. Soc. 35, 2991 (2015).CrossRefGoogle Scholar
  28. 28.
    H. Liu, H. Tian, and H. Cheng, J. Nucl. Mater. 432, 57 (2013).CrossRefGoogle Scholar
  29. 29.
    Z. Ovadyahu, Phys. Rev. B 84, 165209 (2011).CrossRefGoogle Scholar
  30. 30.
    A. Sayyadi-Shahraki, E. Taheri-Nassaj, H. Sharifi, J. Gonzales, T. Kolodiazhnyi, and N. Newman, J. Am. Ceram. Soc. 101, 1665 (2018).CrossRefGoogle Scholar
  31. 31.
    C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J.E. Ryu, A. Shankar, and Z. Guo, Carbon 125, 103 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Guangjun He
    • 1
    • 2
    • 3
    • 4
    • 5
  • Wenwen Qu
    • 1
    • 2
    • 3
    • 4
  • Shaohua Ju
    • 2
    • 3
    • 4
    • 5
  • Chenhui Liu
    • 2
    • 3
    • 4
    • 6
  • Peng Liu
    • 2
    • 3
    • 4
    • 5
  • Shixing Wang
    • 2
    • 3
    • 4
    • 5
    Email author
  • Libo Zhang
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Faculty of ScienceKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.Yunnan Provincial Key Laboratory of Intensification MetallurgyKunmingPeople’s Republic of China
  4. 4.National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment TechnologyKunmingPeople’s Republic of China
  5. 5.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  6. 6.Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan Province, School of Chemistry and EnvironmentYunnan Minzu UniversityKunmingPeople’s Republic of China

Personalised recommendations