Advertisement

JOM

pp 1–8 | Cite as

Copper Behavior and Fayalite Microstructure Changes Influenced by Cu2O Dissolution

  • Zongwen Zhao
  • Zhongbing Wang
  • Ning Peng
  • Bing Peng
  • Yanjie LiangEmail author
  • Shengli Qu
  • Zhunqing Dong
  • Weizhi ZengEmail author
Technical Article
  • 53 Downloads

Abstract

The dissolution of Cu2O in fayalite is one of the chief processes that cause copper loss in metallurgical processes. In this paper, the interaction between fayalite and Cu2O is systematically studied to verify the main mechanism of copper loss as well as the variation in the fayalite microstructure. The results indicate the simultaneous occurrence of melting and dissolution of copper in fayalite. The redox reaction of \( {\text{Cu}}^{ + } + {\text{Fe}}^{2 + } = {\text{Cu}} + {\text{Fe}}^{3 + } \) occurs in the melt phase, resulting in the generation of metallic copper and amorphous iron. The copper dissolution impacts the fayalite microscopically. With the increase of Cu2O, the obvious phase separation is seen in the fayalite melt, and large metal particles are dispersed in the melt. In addition, the dissolution mechanism of copper and the change in the fayalite microstructure are analyzed by x-ray photoelectron spectroscopy and Raman spectroscopy. The results show that amorphous iron trapping Cu(I) and the formation of fayalite-combined copper are the most probable mechanisms for copper dissolution and the fayalite microstructure changes. These findings provide theoretical support for the secondary extraction of copper resources from copper slag.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from National Key R&D Program of China (2017YFC0210402) and the National Natural Science Foundation of China (51704337).

References

  1. 1.
    X. Guo and Y. Song, Resour. Conserv. Recycl. 52, 874 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Rüşen, A. Geveci, and Y.A. Topkaya, Solid State Sci. 14, 1702 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Nagamori, Metall. Mater. Trans. B 5, 531 (1974).CrossRefGoogle Scholar
  4. 4.
    P.J. Mackey, Can. Metall. Q. 21, 221 (2014).CrossRefGoogle Scholar
  5. 5.
    X. Cheng, Z. Cui, L. Contreras, M. Chen, A. Nguyen, and B. Zhao, 8th International Symposium on High Temperature Metallurgical Processing (Cham: Springer, 2017), pp. 385–394.CrossRefGoogle Scholar
  6. 6.
    I. Bellemans, E. De Wilde, N. Moelans, and K. Verbeken, Adv. Colloid Interface Sci. 255, 47 (2018).CrossRefGoogle Scholar
  7. 7.
    E.D. Wilde, I. Bellemans, M. Campforts, A. Khaliq, K. Vanmeensel, D. Seveno, M. Guo, A. Rhamdhani, G. Brooks, and B. Blanpain, Mater. Sci. Technol. 31, 1925 (2015).CrossRefGoogle Scholar
  8. 8.
    S.R. Simeonov, R. Sridhar, and J.M. Toguri, Metall. Mater. Trans. B 26, 325 (1995).CrossRefGoogle Scholar
  9. 9.
    A. Sarrafi, B. Rahmati, H.R. Hassani, and H.H.A. Shirazi, Miner. Eng. 17, 457 (2004).CrossRefGoogle Scholar
  10. 10.
    I.K. Suh, Y. Waseda, and A. Yazawa, High Temp. Mater. Process. 8, 65 (1988).CrossRefGoogle Scholar
  11. 11.
    C. Shi, C. Meyer, and A. Behnood, Resour. Conserv. Recycl. 52, 1115 (2008).CrossRefGoogle Scholar
  12. 12.
    İ. Alp, H. Deveci, and H. Süngün, J. Hazard. Mater. 159, 390 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Holzheid and K. Lodders, Geochim. Cosmochim. Acta 65, 1933 (2001).CrossRefGoogle Scholar
  14. 14.
    J.M. Toguri and N.H. Santander, Can. Metall. Q. 8, 167 (1969).CrossRefGoogle Scholar
  15. 15.
    J.M. Toguri and N.H. Santander, Metall. Mater. Trans. B 3, 590 (1972).CrossRefGoogle Scholar
  16. 16.
    G.K. Hang and H.Y. Sohn, Metall. Mater. Trans. B 29, 583 (1998).CrossRefGoogle Scholar
  17. 17.
    Z. Wang, B. Peng, L. Zhang, Z. Zhao, D. Liu, N. Peng, D. Wang, Y. He, Y. Liang, and H. Liu, JOM 70, 539 (2018).CrossRefGoogle Scholar
  18. 18.
    Z. Wang, Z. Zhao, L. Zhang, F. Liu, B. Peng, L. Chai, D. Liu, D. Liu, T. Wang, H. Liu, and Y. Liang, J. Hazard. Mater. 364, 488 (2019).CrossRefGoogle Scholar
  19. 19.
    D.Y. Jang and D.J. Min, Metall. Mater. Trans. B 42, 1144 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Shi, Y. Liang, L. Chai, X. Min, Z. Zhao, and S. Yang, J. Mol. Struct. 1081, 389 (2015).CrossRefGoogle Scholar
  21. 21.
    D.G. Liu, X.B. Min, Y. Ke, L.Y. Chai, Y.J. Liang, Y.C. Li, L.W. Yao, and Z.B. Wang, Environ. Sci. Pollut. Res. 25, 7600 (2018).CrossRefGoogle Scholar
  22. 22.
    M. Su, C. Liao, T. Chan, K. Shih, T. Xiao, D. Chen, L. Kong, and G. Song, Environ. Sci. Technol. 52, 775 (2018).CrossRefGoogle Scholar
  23. 23.
    Y. Liang, X. Min, L. Chai, M. Wang, W. Liyang, Q. Pan, and M. Okido, Chemosphere 168, 1142 (2017).CrossRefGoogle Scholar
  24. 24.
    P. Thierry, C. Chatillon-Colinet, J. Mathieu, J. Regnard, and J. Amosse, Phys. Chem. Miner. 7, 43 (1981).CrossRefGoogle Scholar
  25. 25.
    H. Tang, X. Liu, M. Xiao, Z. Huang, and X. Tan, J. Environ. Chem. Eng. 5, 4447 (2017).CrossRefGoogle Scholar
  26. 26.
    G. Zhang, M. Reinmöller, M. Klinger, and B. Meyer, Fuel 139, 457 (2015).CrossRefGoogle Scholar
  27. 27.
    T. Wang, Y. Liu, Q. Fang, M. Wu, X. Sun, and F. Lu, Appl. Surf. Sci. 257, 2341 (2011).CrossRefGoogle Scholar
  28. 28.
    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R. Shenbhagaraman, and R. Jayavel, J. Nanosci. Nanotechnol. 16, 1567 (2016).CrossRefGoogle Scholar
  29. 29.
    A. Mhamdi, R. Mimouni, A. Amlouk, M. Amlouk, and S. Belgacem, J. Alloys Compd. 610, 250 (2014).CrossRefGoogle Scholar
  30. 30.
    Z. Tang, S. Hong, W. Xiao, and J. Taylor, Corros Sci. 48, 322 (2006).CrossRefGoogle Scholar
  31. 31.
    S.L. Webb, B.J. Murton, and A.J. Wheeler, Chem. Geol. 366, 24 (2014).CrossRefGoogle Scholar
  32. 32.
    Y.-M. Kuo, C.-T. Wang, J.-W. Wang, and K.-L. Huang, J. Hazard. Mater. 169, 635 (2009).CrossRefGoogle Scholar
  33. 33.
    S. Singh and S. Mitra, Electrochim. Acta 123, 378 (2014).CrossRefGoogle Scholar
  34. 34.
    T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).CrossRefGoogle Scholar
  35. 35.
    M.M.J. Treacy and J.M. Newsam, Nature 332, 249 (1988).CrossRefGoogle Scholar
  36. 36.
    X. Yu, D.E. Day, G.J. Long, and R.K. Brow, J Non-Cryst. Solids 215, 21 (1997).CrossRefGoogle Scholar
  37. 37.
    D.A. Magdas, O. Cozar, V. Chis, I. Ardelean, and N. Vedeanu, Vib. Spectrosc. 48, 251 (2008).CrossRefGoogle Scholar
  38. 38.
    K. Moustakas, A. Mavropoulos, E. Katsou, K.J. Haralambous, and M. Loizidou, J. Hazard. Mater. 207, 44 (2012).CrossRefGoogle Scholar
  39. 39.
    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii, Appl. Surf. Sci. 255, 2730 (2008).CrossRefGoogle Scholar
  40. 40.
    Z. Zhao, L. Chai, B. Peng, Y. Liang, Y. He, and Z. Yan, J Non-Cryst. Solids 466, 21 (2017).CrossRefGoogle Scholar
  41. 41.
    J. Haber, V.A. Zazhigalov, J. Stoch, L.V. Bogutskaya, and I.V. Batcherikova, Catal. Today 33, 39 (1997).CrossRefGoogle Scholar
  42. 42.
    G. Avgouropoulos and T. Ioannides, Appl. Catal. A 244, 155 (2003).CrossRefGoogle Scholar
  43. 43.
    A. Mekki, D. Holland, C.F. McConville, and M. Salim, J. Non-Cryst. Solids 208, 267 (1996).CrossRefGoogle Scholar
  44. 44.
    W.B. Jensen, J. Chem. Educ. 73, 11 (1996).CrossRefGoogle Scholar
  45. 45.
    B.A. Kolesov and J.V. Tanskaya, Mater. Res. Bull. 31, 1035 (1996).CrossRefGoogle Scholar
  46. 46.
    Q. Williams, P. McMillan, and T.F. Cooney, Phys. Chem. Miner. 16, 352 (1989).CrossRefGoogle Scholar
  47. 47.
    D. Santamariaperez, A. Thomson, A. Segura, J. Pellicertorres, F.J. Manjon, F. Corà, K. McColl, M. Wilson, D. Dobson, and P.F. McMillan, Am. Miner. 101, 1642 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Zongwen Zhao
    • 1
  • Zhongbing Wang
    • 1
  • Ning Peng
    • 1
    • 2
  • Bing Peng
    • 1
    • 2
  • Yanjie Liang
    • 1
    • 2
    • 3
    Email author
  • Shengli Qu
    • 4
  • Zhunqing Dong
    • 4
  • Weizhi Zeng
    • 1
    • 2
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal PollutionChangshaChina
  3. 3.Xiang guang Copper Co., Ltd.Yang guChina
  4. 4.Shandong Humon Smelting Co., Ltd.Yan taiChina

Personalised recommendations