, Volume 71, Issue 9, pp 3076–3083 | Cite as

Facile Preparation of Self-Reducible Cu Nanoparticle Paste for Low Temperature Cu-Cu Bonding

  • Yun Mou
  • Jiaxin Liu
  • Hao Cheng
  • Yang Peng
  • Mingxiang ChenEmail author
Advanced Electronic Interconnection


Cu nanoparticle (NP) paste is considered the next-generation die-attach material because of its cost-effectiveness and high conductivity and electro-migration resistance. However, the spontaneous oxidation of Cu NPs severely restrains the incorporation of Cu NP paste into practical applications. Herein, a novel self-reducible Cu NP paste was prepared and demonstrated for low-temperature Cu-Cu bonding. The Cu NP paste was composed of 62 wt.% ultra-small Cu NPs (6.5 nm) and 38 wt.% organic components [isopropanolamine (IPA) stabilizer and ethylene glycol]. The reducing and sintering mechanisms of Cu NP paste were proposed, and the effects of sintering temperature on the mechanical properties and microstructure evolutions of Cu-Cu joints were systematically investigated. Consequently, the reducibility of the IPA stabilizer was beneficial for eliminating the surface oxides and enhancing the sinterability of Cu NPs, and the robust and high-strength Cu-Cu joints (> 20 MPa) were achieved at low temperature of 200°C in Ar atmosphere. Furthermore, the microstructure observations reveal that the robust bonding is attributed to the remarkable metallurgical interconnection between the substrates and sintered Cu NP layer.



The authors gratefully acknowledged the financial support from the National Natural Science Foundation of China (NFSC, 51275194, and 51775219), the Fundamental Research Funds for Central Universities (2016JCTD112 and 2017JYCXJJ006), and the Graduates’ Innovation Fund, Huazhong University of Science and Technology. Thanks to the Analytical and Testing Center of Huazhong University of Science and Technology for the support with TEM, FT-IR, and SEM measurement.

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this paper.

Supplementary material

11837_2019_3517_MOESM1_ESM.pdf (373 kb)
Supplementary material 1 (PDF 373 kb)


  1. 1.
    K.N. Tu and T. Tian, Sci. China Technol. Sci. 56, 1740 (2013).CrossRefGoogle Scholar
  2. 2.
    F.X. Che, X. Zhang, and J.K. Lin, Microelectron. Reliab. 61, 64 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, T. Li, G. Liao, and Z. Tang, J. Alloys Compd. 709, 700 (2017).CrossRefGoogle Scholar
  4. 4.
    Y.C. Liu, J.W.R. Teo, S.K. Tung, and K.H. Lam, J. Alloys Compd. 448, 340 (2018).CrossRefGoogle Scholar
  5. 5.
    A. Kirubanandham, I. Lujan-Regalado, R. Vallabhaneni, and N. Chawla, JOM 68, 2879 (2016).CrossRefGoogle Scholar
  6. 6.
    X. Liu, S. He, and H. Nishikawa, J. Alloys Compd. 695, 2165 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, J. Alloys Compd. 768, 114 (2018).CrossRefGoogle Scholar
  8. 8.
    R.J. Coyle, K. Sweatman, and B. Arfaei, JOM 69, 1244 (2017).CrossRefGoogle Scholar
  9. 9.
    H. Chen, T. Hu, M. Li, and Z. Zhao, IEEE Trans. Power Electron. 32, 441 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Lin, H. Chang, C. Cho, Y. Liu, and Y. Kuo, Electron. Mater. Lett. 11, 687 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Lin, M. Wang, C. Yeh, H. Chang, and Y. Liu, J. Alloys Compd. 702, 561 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Lin, C. Cho, and H. Chang, J. Electron. Mater. 43, 204 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Lin, C. Yeh, and M. Wang, Mater. Charact. 137, 14 (2018).CrossRefGoogle Scholar
  14. 14.
    K.S. Siow, J. Alloys Compd. 514, 6 (2012).CrossRefGoogle Scholar
  15. 15.
    A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 977, 153117 (2010).CrossRefGoogle Scholar
  16. 16.
    E. Ide, S. Angata, A. Hiros, and K. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  17. 17.
    X. Si, J. Cao, S. Liu, X. Song, J. Qi, Y. Huang, and J. Feng, Int. J. Hydrog. Energy 43, 2977 (2018).CrossRefGoogle Scholar
  18. 18.
    J. Li, C.M. Johnson, C. Buttay, W. Sabbah, and S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y. Liu, S. Lin, and K. Suganuma, Sci. Rep. 6, 34769 (2016).CrossRefGoogle Scholar
  20. 20.
    J.J. Li, C.L. Cheng, T.L. Shi, J.H. Fan, X. Yu, S.Y. Cheng, G.L. Liao, and Z.R. Tang, Mater. Lett. 184, 193 (2016).CrossRefGoogle Scholar
  21. 21.
    Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, Int. J. Adhes. Adhes. 33, 50 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Yan, G. Zou, A. Hu, and Y.N. Zhou, J. Mater. Chem. 21, 15981 (2011).CrossRefGoogle Scholar
  23. 23.
    Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, Solid State Sci. 13, 553 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Biçer and İ. Şişman, Powder Technol. 198, 279 (2010).CrossRefGoogle Scholar
  25. 25.
    Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, and C. Wang, RSC Adv. 6, 91783 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. Liang, H. Hou, Y. Yang, H. Glicksman, and S. Ehrman, ACS Appl. Mater. Interfaces 9, 34587 (2017).CrossRefGoogle Scholar
  27. 27.
    N.A. Luechinger, E.K. Athanassiou, and W.J. Stark, Nanotechnology 19, 445201 (2008).CrossRefGoogle Scholar
  28. 28.
    T. Hu, H. Chen, C. Wang, M. Huang, and F. Zhao, Surf. Coat. Technol. 319, 230 (2017).CrossRefGoogle Scholar
  29. 29.
    K. Woo, Y. Kim, B. Lee, J. Kim, and J. Moon, ACS Appl. Mater. Interfaces 3, 2377 (2011).CrossRefGoogle Scholar
  30. 30.
    I. Kim and J. Kim, J. Appl. Phys. 108, 102807 (2010).CrossRefGoogle Scholar
  31. 31.
    J. Liu, H. Chen, H. Ji, and M. Li, ACS Appl. Mater. Interfaces 8, 33289 (2016).CrossRefGoogle Scholar
  32. 32.
    Y. Mou, Y. Peng, Y. Zhang, H. Cheng, and M. Chen, Mater. Lett. 227, 179 (2018).CrossRefGoogle Scholar
  33. 33.
    T. Fujimoto, T. Ogura, T. Sano, M. Takahashi, and A. Hirose, Mater. Trans. 56, 992 (2015).CrossRefGoogle Scholar
  34. 34.
    Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, and H. Kawasaki, ACS Appl. Mater. Interfaces 7, 19382 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Lee, J. Jun, W. Na, J. Oh, Y. Kim, W. Kim, and J. Jang, J. Mater. Chem. C 5, 12507 (2017).CrossRefGoogle Scholar
  36. 36.
    C.C. Li, C.K. Chung, W.L. Shih, and C.R. Kao, Metall. Mater. Trans. A 45, 2343 (2014).CrossRefGoogle Scholar
  37. 37.
    G.S. Wable, S. Chada, B. Neal, and R.A. Fournelle, JOM 57, 38 (2005).CrossRefGoogle Scholar
  38. 38.
    Y. Mou, H. Cheng, Y. Peng, and M. Chen, Mater. Lett. 229, 353 (2018).CrossRefGoogle Scholar
  39. 39.
    J. Li, Q. Liang, T. Shi, J. Fan, B. Gong, C. Feng, J. Fan, G. Liao, and Z. Tang, J. Alloys Compd. 772, 793 (2019).CrossRefGoogle Scholar
  40. 40.
    C.C. Yang and Y.W. Mai, Mater. Sci. Eng. R. Rep. 79, 1 (2014).CrossRefGoogle Scholar
  41. 41.
    J.R. Greer and R.A. Street, Acta Mater. 55, 6345 (2007).CrossRefGoogle Scholar
  42. 42.
    J. Mittal and K.-L. Lin, Mater. Charact. 109, 19 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yun Mou
    • 1
  • Jiaxin Liu
    • 1
  • Hao Cheng
    • 1
  • Yang Peng
    • 1
  • Mingxiang Chen
    • 1
    • 2
    Email author
  1. 1.School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations