Advertisement

JOM

, Volume 71, Issue 7, pp 2227–2234 | Cite as

The Role of Second Phases on the Creep Behavior of As-Cast and Hot-Extruded Mg-Ca-Zr Alloys

  • S. YouEmail author
  • Y. Huang
  • H. Dieringa
  • E. Maawad
  • W. Gan
  • K. U. Kainer
  • N. Hort
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance
  • 58 Downloads

Abstract

The effect of second phases on the creep behavior of Mg-Ca-Zr alloys was investigated. Casting and hot-extrusion processes were performed to prepare Mg-xCa-0.5Zr (x = 0 wt.%, 0.3 wt.% and 0.6 wt.%) alloys with different morphologies and distributions of second phases. The as-cast microstructures of Mg-Ca-Zr alloys consisted of an Mg matrix and coarse Mg2Ca intermetallic compounds distributed at the grain boundaries. The hot-extruded microstructures exhibited finer Mg2Ca spherical particles and precipitates distributed homogeneously inside the matrix and along the grain boundaries. The results of creep tests suggested that the viscous glide of dislocation and dislocation climb were the dominant creep mechanisms of Mg-Ca-Zr alloys crept at 200°C. The creep property was strongly related to the morphology and distribution of the Mg2Ca phases. The finer and more homogeneously distributed particles showed a better strengthening effect than the coarser intermetallic compounds distributed along the grain boundaries.

Notes

Acknowledgements

The authors are grateful to Mr. G. Meister from MagIC at Helmholtz-Zentrum Geesthacht for technical support. One of the authors (S. You) acknowledges the financial support from the China Scholarship Council (CSC).

References

  1. 1.
    K.U. Kainer, Magnesium Alloys and Technology, 1st ed. (Germany: Wiley, 2003), pp. 1–3.CrossRefGoogle Scholar
  2. 2.
    A.A. Luo, J. Magnes. Alloys 1, 2 (2013).CrossRefGoogle Scholar
  3. 3.
    B. Mordike, Mater. Sci. Eng. A. 324, 103 (2002).CrossRefGoogle Scholar
  4. 4.
    N. Mo, Q. Tan, B. Jiang, F. Pan, and M.-X. Zhang, Metall. Mater. Trans. A 48, 5710 (2017).CrossRefGoogle Scholar
  5. 5.
    J. TerBush, A. Suzuki, N. Saddock, J. Jones, and T. Pollock, Scr. Mater. 58, 914 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honma, and Y. Kojima, Mater. Sci. Eng. A 509, 105 (2009).CrossRefGoogle Scholar
  7. 7.
    B. Kondori and R. Mahmudi, Mater. Sci. Eng. A 700, 438 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Yang, L. Cheng, J. Shen, and F. Pan, Rare Met. 28, 576 (2009).CrossRefGoogle Scholar
  9. 9.
    D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Metall. Mater. Trans. A 36, 1669 (2005).CrossRefGoogle Scholar
  10. 10.
    J. Fan, G. Yang, Y. Zhou, Y. Wei, and B. Xu, Metall. Mater. Trans. A 40, 2184 (2009).CrossRefGoogle Scholar
  11. 11.
    N. Zhou, Z.Y. Zhang, J. Dong, L. Jin, and W.J. Ding, Mater. Sci. Eng. A 560, 103 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Ozturk, Y. Zhong, A.A. Luo, and Z.K. Liu, Jom-J Min. Met. Mat. S 55, A40 (2003).CrossRefGoogle Scholar
  13. 13.
    Y. Terada, D. Itoh, and T. Sato, Mater. Sci. Eng. A 523, 214 (2009).CrossRefGoogle Scholar
  14. 14.
    F.R. Elsayed, N. Hort, M.A. Salgado Ordorica, and K.U. Kainer, Mater. Sci. Forum 690, 65 (2011).CrossRefGoogle Scholar
  15. 15.
    J.C. Oh, T. Ohkubo, T. Mukai, and K. Hono, Scr. Mater. 53, 675 (2005).CrossRefGoogle Scholar
  16. 16.
    K. Oh-ishi, R. Watanabe, C.L. Mendis, and K. Hono, Mater. Sci. Eng. A 526, 177 (2009).CrossRefGoogle Scholar
  17. 17.
    H. Pan, G. Qin, Y. Ren, L. Wang, S. Sun, and X. Meng, J. Alloys Compd. 630, 272 (2015).CrossRefGoogle Scholar
  18. 18.
    K.R. Athul, U.T.S. Pillai, A. Srinivasan, and B.C. Pai, Adv. Eng. Mater. 18, 770 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, and K. Higashi, Mater. Sci. Eng. A 407, 53 (2005).CrossRefGoogle Scholar
  20. 20.
    Y. Li and T.G. Langdon, Scr. Mater. 36, 1457 (1997).CrossRefGoogle Scholar
  21. 21.
    J. Gibeling and W. Nix, Mater. Sci. Eng. 45, 123 (1980).CrossRefGoogle Scholar
  22. 22.
    D.H. StJohn, M.A. Easton, M. Qian, and J.A. Taylor, Metall. Mater. Trans. A 44, 2935 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Aljarrah and M. Medraj, CALPHAD 32, 240 (2008).CrossRefGoogle Scholar
  24. 24.
    D. Blavette, E. Cadel, A. Fraczkiewicz, and A. Menand, Science 286, 2317 (1999).CrossRefGoogle Scholar
  25. 25.
    Y. Ortega, M.A. Monge, and R. Pareja, J. Alloys Compd. 463, 62 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Geng, B. Zhang, A. Li, and C. Dong, Mater. Lett. 63, 557 (2009).CrossRefGoogle Scholar
  27. 27.
    B. Zhang, Y. Wang, L. Geng, and C. Lu, Mater. Sci. Eng. A 539, 56 (2012).CrossRefGoogle Scholar
  28. 28.
    R. Coble, J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Materials ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.German Engineering Materials Centre (GEMS)Helmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations