Advertisement

JOM

, Volume 71, Issue 7, pp 2272–2279 | Cite as

Influence of the Tungsten Content on the Elastic Modulus of New Ti-15Mo-W Alloys Intended for Medical Applications

  • Mihai Buzatu
  • Victor Geantă
  • Radu Ştefănoiu
  • Mihai Buţu
  • Mircea-Ionuţ Petrescu
  • Mihai Buzatu
  • Valeriu-Gabriel Ghica
  • Florentina Niculescu
  • Gheorghe IacobEmail author
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • 56 Downloads

Abstract

A study has been carried out on the elastic modulus of cast ternary Ti-15Mo-W alloys (containing 4 up to 11 wt.% W). Tungsten was added to the Ti-15Mo alloy to improve the mechanical properties. The influence of tungsten content on the elastic modulus is discussed more thoroughly, along with other mechanical properties. Samples were obtained by successive melting using pure metals in vacuum arc re-melting equipment. The alloy microstructure proved to be homogeneous showing the β-phase predominance. The modulus of elasticity was determined by mechanical compression tests. The samples showed no cracks, having super-plasticity characteristics similar to other titanium alloys. According to the tests, the samples showed good mechanical properties. The values obtained ranged from 248–327 HV for microhardness, 782–921 MPa for compressive strength and 17.86–45.35 GPa for the elastic modulus.

Notes

Acknowledgements

This work has been supported by The National Grant GNaC2018 ARUT. We hereby acknowledge the research funds project GNaC2018 ARUT (Internal No. SM 35-18-02/2018) for providing the infrastructure used in this work and the project.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11837_2019_3512_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. 1.
    M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li, Regen. Biomater. 173 (2016).Google Scholar
  2. 2.
    Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, Materials 7, 1709 (2014).CrossRefGoogle Scholar
  3. 3.
    P.M. Hashemi, E. Borhani, and M.S. Nourbakhsh, Nanomed. J. 3, 202 (2016).Google Scholar
  4. 4.
    R.M. Pilliar, Metallic Biomaterials. Biomedical Materials, ed. R. Narayan (New York, NY: Springer, 2009), p. 54.Google Scholar
  5. 5.
    M.C. Conti, A. Karl, P.S. Wismayer, and J. Buhagiar, Biomatter 4, e27713 (2014).CrossRefGoogle Scholar
  6. 6.
    M.G. Minciuna, P. Vizureanu, D.C. Achitei, N. Ghiban, A.V. Sandu, and N.C. Forna, Rev. Chim. 65, 335 (2014).Google Scholar
  7. 7.
    A. Ghiban, M. Buzatu, B. Ghiban, and S. Ciucă, U.P.B. Sci. Bull. Ser. B 77, 299 (2015).Google Scholar
  8. 8.
    M. Dinu, M. Târcolea, M. Cojocaru, A.I. Gherghilescu, and C.M. Cotruţ, U.P.B. Sci. Bull. Ser. B 77, 149 (2015).Google Scholar
  9. 9.
    R.M. Angelescu, D. Răducanu, V.D. Cojocaru, M.L. Angelescu, M. Buţu, I. Cincă, and I. Dan, U.P.B. Sci. Bull. Ser. B 77, 221 (2015).Google Scholar
  10. 10.
    I.V. Okulov, M. Bönisch, A.V. Okulov, A.S. Volegov, H. Attar, S. Ehtemam-Haghighi, M. Calin, Z. Wang, A. Hohenwarter, I. Kaban, K.G. Prashanth, and J. Eckert, Mater. Sci. Eng. A 733, 80 (2018).CrossRefGoogle Scholar
  11. 11.
    H. Attar, S. Ehtemam-Haghighi, D. Kent, and M.S. Dargusch, Int. J. Mach. Tool. Manufact. 133, 85 (2018).CrossRefGoogle Scholar
  12. 12.
    R.M. Angelescu, C. Cotruţ, A. Nocivin, V.D. Cojocaru, D. Răducanu, M.L. Angelescu, and I. Cincă, U.P.B. Sci. Bull. Ser. B 77, 237 (2015).Google Scholar
  13. 13.
    X. Liu, S. Chen, J.K.H. Tsoi, and J.P. Matinlinna, Regen. Biomater. 4, 315 (2017).CrossRefGoogle Scholar
  14. 14.
    D. Kapoor, Johnson Matthey Technol. Rev. 61, 66 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, and K. Yang, J. Mech. Behav. Biomed. Mater. 87, 68 (2018).CrossRefGoogle Scholar
  16. 16.
    R. Radha and D. Sreekanth, J. Magn. Alloys 5, 286 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Mas-Moruno, B. Garrido, D. Rodriguez, E. Ruperez, and F.J. Gil, J. Mater. Sci. Mater. Med. 26, 109 (2015).CrossRefGoogle Scholar
  18. 18.
    N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, and M.H.I. Ibrahim, J. Alloys Compd. 701, 698 (2017).CrossRefGoogle Scholar
  19. 19.
    R.B. Osman and M.V. Swain, Materials 8, 932 (2015).CrossRefGoogle Scholar
  20. 20.
    A.H.G. Mohamed, I. Mervat, and K. Sengo, Adv. Mat. Res. 1024, 308 (2014).Google Scholar
  21. 21.
    M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Int. J. Chem. Nuclear Metall. Mater. Eng. 8, 726 (2014).Google Scholar
  22. 22.
    E.N. Kablov, N.A. Nochovnaya, Y.A. Gribkov, and A.A. Shiriaev, Inorg. Mater. Appl. Res. 8, 837 (2017).CrossRefGoogle Scholar
  23. 23.
    R.P. Kolli and A. Devaraj, Metals 8, 506 (2018).CrossRefGoogle Scholar
  24. 24.
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).CrossRefGoogle Scholar
  25. 25.
    F. Rupp, J. Geis-Gerstorfer, and K.E. Geckeler, Adv. Mater. 8, 254 (1996).CrossRefGoogle Scholar
  26. 26.
    T. Nishimura, J. Power Energy Syst. 2, 530 (2008).CrossRefGoogle Scholar
  27. 27.
    M.L. Witten, P.R. Sheppard, and B.L. Witten, Chem. Biol. Interact. 196, 87 (2012).CrossRefGoogle Scholar
  28. 28.
    M.S. Bălţatu, P. Vizureanu, M.H. Ţierean, M.G. Minciună, and D.C. Achiţei, Adv. Mat. Res. 1128, 105 (2015).Google Scholar
  29. 29.
    D. Yang, Z. Guo, H. Shao, X. Liu, and Y. Ji, Procedia Eng. 36, 160 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacquesa, and F. Prima, Scr. Mater. 66, 749 (2012).CrossRefGoogle Scholar
  31. 31.
    T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, and T. Saito, Mater. Trans. 46, 3001 (2005).CrossRefGoogle Scholar
  32. 32.
    L.C. Campanelli, F.G. Coury, Y. Guo, P.S. Carvalho, P. da Silva, M.J. Kaufman, and C. Bolfarini, Mater. Sci. Eng. A 729, 323 (2018).CrossRefGoogle Scholar
  33. 33.
    J.A. Disegi, M.D. Roach, R.D. McMillan, and B.T. Shultzabarger, J. Biomed. Mater. Res. B Appl. Biomater. 105, 2010 (2017).CrossRefGoogle Scholar
  34. 34.
    M. Buzatu, Ş.I. Ghica, M.I. Petrescu, V. Geantă, R. Ştefănoiu, G. Iacob, M. Buţu, and E. Vasile, Mater. Plast. 54, 596 (2017).Google Scholar
  35. 35.
    T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science 300, 464 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Buzatu, Ş.I. Ghica, E. Vasile, V. Geantă, R. Ştefănoiu, M.I. Petrescu, G. Iacob, and M. Buţu, U.P.B. Sci. Bull. Ser. B 78, 161 (2016).Google Scholar
  37. 37.
    A. Wadood, T. Inamura, Y. Yamabe-Mitarai, and H. Hosoda, Mater. Trans. 54, 566 (2013).CrossRefGoogle Scholar
  38. 38.
    P. Manda, A. Pathak, A. Mukhopadhyay, U. Chakkingal, and A.K. Singh, J. Appl. Res. Technol. 15, 21 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mihai Buzatu
    • 1
  • Victor Geantă
    • 2
  • Radu Ştefănoiu
    • 2
  • Mihai Buţu
    • 2
  • Mircea-Ionuţ Petrescu
    • 2
  • Mihai Buzatu
    • 2
  • Valeriu-Gabriel Ghica
    • 2
  • Florentina Niculescu
    • 2
  • Gheorghe Iacob
    • 2
    Email author
  1. 1.Emergency University HospitalBucharestRomania
  2. 2.Faculty of Materials Science and EngineeringUniversity “Politehnica” of BucharestBucharestRomania

Personalised recommendations