Advertisement

JOM

, Volume 71, Issue 7, pp 2245–2252 | Cite as

Influences of AlN/Al Nanoparticles on the Creep Properties of Elektron21 Prepared by High Shear Dispersion Technology

  • Hong YangEmail author
  • Yuanding Huang
  • Sarkis Gavras
  • Karl Ulrich Kainer
  • Norbert Hort
  • Hajo Dieringa
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance
  • 59 Downloads

Abstract

Elektron21 (E21) and its composites with additions of 0.25 wt.%, 0.5 wt.%, and 1 wt.% AlN/Al nanoparticles (NPs) were fabricated by a high shear dispersion technology. Their creep properties were investigated over a stress range between 80 MPa and 140 MPa at 240°C. The grain size exhibits an obvious increase with the addition of AlN/Al NPs compared with the monolithic E21 alloy. Increasing the content of AlN/Al NPs leads to a pronounced improvement of creep resistance. Microstructural analysis shows that, with the addition of 1% AlN/Al NPs in E21, the distribution of the intermetallics Mg3RE becomes much more homogeneous and their size is reduced. Such Mg3RE particles can prevent the dislocation slip more efficiently during creep. Besides these Mg3RE particles, the additional formation of Al2RE and Al2Zr3 phases, which results from the reactions of AlN/Al NPs and the alloying elements Zr and REs, could act as thermal stable particles to improve the creep resistance. Finally, the remained AlN NPs without reactions are beneficial for the improvement of the creep resistance to some extent due to Orowan strengthening.

Notes

Acknowledgement

The authors acknowledge Mr. G. Meister and Mr. Yiming Jin for preparing the alloys. Hong Yang gratefully thanks the China Scholarship Council (201606050110) for the award of a fellowship and funding.

References

  1. 1.
    A.A. Luo, Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
  2. 2.
    F. Labib, R. Mahmudi, and H.M. Ghasemi, Mater. Sci. Eng. A 640, 91 (2015).CrossRefGoogle Scholar
  3. 3.
    H. Dieringa, Y. Huang, P. Maier, N. Hort, and K.U. Kainer, Mater. Sci. Eng. A 410–411, 85 (2005).CrossRefGoogle Scholar
  4. 4.
    L. Katsarou, M. Mounib, W. Lefebvre, S. Vorozhtsov, M. Pavese, C. Badini, J.M. Molina-Aldareguia, C.C. Jimenez, M.T. Pérez Prado, and H. Dieringa, Mater. Sci. Eng. A 659, 84 (2016).CrossRefGoogle Scholar
  5. 5.
    H.M. Fu, M.X. Zhang, D. Qiu, P.M. Kelly, and J.A. Taylor, J. Alloys Compd. 478, 809 (2009).CrossRefGoogle Scholar
  6. 6.
    E. Bedolla, J. Lemus-Ruiz, and A. Contreras, Mater. Des. 38, 91 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Sankaranarayanan, M.K. Habibi, S. Jayalakshmi, K. Jia Ai, A. Almajid, and M. Gupta, Mater. Sci. Technol. 31, 1122 (2014).CrossRefGoogle Scholar
  8. 8.
    S.F. Hassan and M. Gupta, Mater. Sci. Eng. A 392, 163 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Kamrani, D. Penther, A. Ghasemi, R. Riedel, and C. Fleck, Adv. Powder Technol. 29, 1742 (2018).CrossRefGoogle Scholar
  10. 10.
    K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, J. Alloys Compd. 509, 8664 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Saboori, E. Padovano, M. Pavese, H. Dieringa, and C. Badini, Materials 10, 1380 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Tzamtzis, H. Zhang, N. Hari Babu, and Z. Fan, Mater. Sci. Eng. A 527, 2929 (2010).CrossRefGoogle Scholar
  13. 13.
    X. Yang, Y. Huang, N.S. Barekar, S. Das, I.C. Stone, and Z. Fan, Compos. A 90, 349 (2016).CrossRefGoogle Scholar
  14. 14.
    M.I. Lerner, E.A. Glazkova, A.S. Lozhkomoev, N.V. Svarovskaya, O.V. Bakina, A.V. Pervikov, and S.G. Psakhie, Powder Technol. 295, 307 (2016).CrossRefGoogle Scholar
  15. 15.
    Z. Fan, Y. Wang, M. Xia, and S. Arumuganathar, Acta Mater. 57, 4891 (2009).CrossRefGoogle Scholar
  16. 16.
    J.B. Patel, X. Yang, C.L. Mendis, and Z. Fan, JOM 69, 1071 (2017).CrossRefGoogle Scholar
  17. 17.
    Z. Fan and G. Liu, Acta Mater. 53, 4345 (2005).CrossRefGoogle Scholar
  18. 18.
    H. Men, B. Jiang, and Z. Fan, Acta Mater. 58, 6526 (2010).CrossRefGoogle Scholar
  19. 19.
    ATSM, Standard Test Method for Determining Average Grain Size. West Conshohocken, PA 1 (2013).Google Scholar
  20. 20.
    H. Dieringa, J. Mater. Sci. 46, 289 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Dieringa, Y. Huang, P. Wittke, M. Klein, F. Walther, M. Dikovits, and C. Poletti, Mater. Sci. Eng. A 585, 430 (2013).CrossRefGoogle Scholar
  22. 22.
    A. Arunachaleswaran, I.M. Pereira, H. Dieringa, Y. Huang, N. Hort, B.K. Dhindaw, and K.U. Kainer, Mater. Sci. Eng. A 460–461, 268 (2007).CrossRefGoogle Scholar
  23. 23.
    H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, and K. Higashi, Mater. Sci. Eng. A 407, 53 (2005).CrossRefGoogle Scholar
  24. 24.
    A. Saboori, E. Padovano, M. Pavese, and C. Badini, Materials 11, 27 (2018).CrossRefGoogle Scholar
  25. 25.
    A. Kielbus, T. Rzychon, and R. Przeliorz, Mater. Sci. Forum 638–642, 1447 (2010).CrossRefGoogle Scholar
  26. 26.
    L. Peng, P. Fu, Z. Li, Y. Wang, and H. Jiang, J. Mater. Sci. 49, 7105 (2014).CrossRefGoogle Scholar
  27. 27.
    D. Wu, Y.Q. Ma, R.S. Chen, and W. Ke, J. Magnes. Alloys 2, 20 (2014).CrossRefGoogle Scholar
  28. 28.
    J. Murray, A. Peruzzi, and J.P. Abriata, J. Phase Equilibria 13, 277 (1992).CrossRefGoogle Scholar
  29. 29.
    S.N. Agafonov, S.A. Krasikov, A.A. Ponomarenko, and L.A. Ovchinnikova, Inorg. Mater. 48, 813 (2012).CrossRefGoogle Scholar
  30. 30.
    H.M. Fu, M.X. Zhang, D. Qiu, P.M. Kelly, and J.A. Taylor, J. Alloys Compd. 478, 809 (2009).CrossRefGoogle Scholar
  31. 31.
    N. Mo, Q. Tan, M. Bermingham, Y. Huang, H. Dieringa, N. Hort, and M.-X. Zhang, Mater. Des. 155, 422 (2018).CrossRefGoogle Scholar
  32. 32.
    K.R. Athul, U.T.S. Pillai, A. Srinivasan, and B.C. Pai, Adv. Eng. Mater. 18, 770 (2016).CrossRefGoogle Scholar
  33. 33.
    J.B. Ferguson, F. Sheykh-Jaberi, C.-S. Kim, P.K. Rohatgi, and K. Cho, Mater. Sci. Eng. A 558, 193 (2012).CrossRefGoogle Scholar
  34. 34.
    D. Amberger, P. Eisenlohr, and M. Göken, Acta Mater. 60, 2277 (2012).CrossRefGoogle Scholar
  35. 35.
    N. Hort, Y. Huang, and K.U. Kainer, Adv. Eng. Mater. 8, 235 (2006).CrossRefGoogle Scholar
  36. 36.
    S.M. Zhu, J.F. Nie, M.A. Gibson, M.A. Easton, and P. Bakke, Metall. Mater. Trans. A 43, 4137 (2012).CrossRefGoogle Scholar
  37. 37.
    F. Kabirian and R. Mahmudi, Metall. Mater. Trans. A 41, 3488 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hong Yang
    • 1
    Email author
  • Yuanding Huang
    • 1
  • Sarkis Gavras
    • 1
  • Karl Ulrich Kainer
    • 1
  • Norbert Hort
    • 1
  • Hajo Dieringa
    • 1
  1. 1.MagIC Magnesium Innovation CentreHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations