Advertisement

JOM

, Volume 71, Issue 7, pp 2435–2444 | Cite as

Design and Development of Shielded Metal Arc Welding (SMAW) Electrode Coatings Using a CaO-CaF2-SiO2 and CaO-SiO2-Al2O3 Flux System

  • Sumit MahajanEmail author
  • Rahul Chhibber
Technical Article
  • 40 Downloads

Abstract

This study aims to investigate the physicochemical and thermophysical behavior of the electrode coatings produced using CaO-CaF2-SiO2 and CaO-SiO2-Al2O3 ternary phase systems. Electrode coating compositions for welding power plant materials are either patented or not available in the public domain so researchers need to explore the flux coatings to improve the properties of welds produced. An extreme vertices design methodology was used to obtain the different flux combinations to study the effect of electrode coating constituents on weight loss, density, specific heat, change in enthalpy, thermal diffusivity and thermal conductivity. These properties play an important role in achieving better weld quality. X-ray diffraction and Fourier-transform infrared spectroscopy techniques were used to analyze the different phases present and their structural behavior. Multi-response optimization was carried out to obtain the optimum flux composition and study the effect of individual constituents and their interaction effects on the thermophysical and physicochemical properties.

Notes

Supplementary material

11837_2019_3494_MOESM1_ESM.pdf (738 kb)
Supplementary material 1 (PDF 737 kb)

References

  1. 1.
    K. Sham and S. Liu, Weld. J. 93, 271 (2014).Google Scholar
  2. 2.
    T.H. North, H.B. Bell, and A. Nowicki, Suppl. Weld. J. 229, 63s (1978).Google Scholar
  3. 3.
    A. Joseph, K.R. Sanjai, and J.T. Murgann, Press. Vessels Pip. 82, 700 (2005).CrossRefGoogle Scholar
  4. 4.
    L. Sharma, R. Chhibber, IMechE Part E J. Process Mech. Eng. 0(0), 1 (2018).Google Scholar
  5. 5.
    J.H. Palm, Weld. J. 51, 358s (1972).Google Scholar
  6. 6.
    R.A. McLean and V.L. Anderson, Technometrics 8, 447 (1966).MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Bhandari, R. Chhibber, and N. Arora, J. Manuf. Process. 23, 61 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Bhandari, R. Chhibber, and N. Arora, Mater. Sci. Forum 880, 37 (2017).CrossRefGoogle Scholar
  9. 9.
    D. Bhandari, R. Chhibber, N. Arora, IMechE Part L J. Mater. Des. Appl. 0(0), 1 (2016).Google Scholar
  10. 10.
    S. Jindal, R. Chhibber, and N.P. Mehta, IMechE Part B J. Eng. Manuf. 227, 383 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Jindal, R. Chhibber, and N.P. Mehta, IMechE Part B J. Eng. Manuf. 228, 1259 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Ushio, B. Zaghloul, and W. Metawally, Transactions of JWRI 24, 45 (1995).Google Scholar
  13. 13.
    T.W. Eagar, Weld Res. Suppl. 22, 76s (1978).Google Scholar
  14. 14.
    C.A. Natalie and D.L. Olson, Ann. Rev. Mater. Sci. 16, 389 (1986).CrossRefGoogle Scholar
  15. 15.
    R. Qin and G. He, Metall. Mater. Trans. A 44A, 1475 (2012).Google Scholar
  16. 16.
    H. Wang, R. Qin, and G. He, Metall. Mater. Trans. A 47A, 4530 (2016).CrossRefGoogle Scholar
  17. 17.
    R.C. DeVries, R. Roy, and F. Osborn, J. Am. Ceram. Soc. 38, 158 (1955).CrossRefGoogle Scholar
  18. 18.
    G. Eriksson and A.D. Pelton, Metall. Mater. Trans. A 24, 807 (1993).CrossRefGoogle Scholar
  19. 19.
    P.A. Burke, J.E. Indacochea, and D.L. Olson, Weld J. 69, 115 (1990).Google Scholar
  20. 20.
    C.B. Dallam, S. Liu, and D.L. Olson, Weld J. 64, 140 (1985).Google Scholar
  21. 21.
    K. C. Mills, “Estimation of slag properties”, Southern African Pyrometallurgy (Short course), March 2011.Google Scholar
  22. 22.
    S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lorz, and R. Carli, Ironmak. Steelmak. 27, 238 (2000).CrossRefGoogle Scholar
  23. 23.
    K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, and H.T. Tsai, ISIJ Int. 45, 619 (2005).CrossRefGoogle Scholar
  24. 24.
    J.H. Kim, R.H. Frost, D.L. Olson, and M. Blander, Weld. Res. Suppl. 69, 446s (1990).Google Scholar
  25. 25.
    U. Mitra and T.W. Eagar, Metall. Mater. Trans. A 22B, 83 (1991).CrossRefGoogle Scholar
  26. 26.
    L. Sharma and R. Chhibber, Ceram. Int. 45, 1569 (2019).CrossRefGoogle Scholar
  27. 27.
    L. Sharma, R. Chhibber, Silicon,  https://doi.org/10.1007/s12633-019-0068-5.
  28. 28.
    P. Kanjilal, T.K. Pal, and S.K. Majumdar, Weld. J. 86, 135s (2007).Google Scholar
  29. 29.
    K.C. Mills and S. Seethharaman, Fundamentals of metallurgy (Abington: Woodhead Publishing, 2005). ISBN-10: 1-84569-094-X.Google Scholar
  30. 30.
    M. Kerstan, M. Muller, and C. Russel, Mater. Res. Bull. 46, 2456 (2011).CrossRefGoogle Scholar
  31. 31.
    Y.P. Tarlakov, I.F. Es’kova, A.M. Shevyakov, Issled Strukt Sostyaniya Neorg Veshchestu 1, 7 (1974).Google Scholar
  32. 32.
    G. Kaur, M. Kumar, A. Arora, O.P. Pandey, and K. Singh, J. Non Cryst Solids 357, 858 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Garai, N. Sasmal, A.R. Molla, and B. Karmakar, Solid State Sci. 44, 10 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Mechanical EngineeringIIT JodhpurJodhpurIndia

Personalised recommendations