, Volume 71, Issue 7, pp 2194–2201 | Cite as

Comparative Study on Microstructure and Mechanical Properties of Mg-3Nd-3Al and Mg-3Nd-0.5Zr Alloys Under Different Heat Treatment Conditions

  • Lei Wang
  • Yicheng FengEmail author
  • Erjun Guo
  • Liping Wang
  • Yuanke Fu
  • Sicong Zhao
  • Guojian Cao
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance


The effect of heat treatment conditions on the microstructure and mechanical properties of Mg-3Nd-3Al and Mg-3Nd-0.5Zr alloys has been comparatively investigated. The experimental results showed that the grain size of Mg-3Nd-3Al and Mg-3Nd-0.5Zr alloys was similar, which was 48 ± 4 μm and 46 ± 4 μm in as-cast condition and 50 ± 3 μm and 50 ± 4 μm in solid solution (T4) and solid solution + peak aging (T6) conditions, respectively. The intermetallic phases in the as-cast Mg-3Nd-3Al alloy were granular Al2Nd and acicular Al11Nd3. The intermetallic phase in the as-cast Mg-3Nd-0.5Zr alloy was Mg12Nd. The Al2Nd phase did not dissolve and the Al11Nd3 phase decomposed into the Al2Nd phase and the Mg12Nd phase completely dissolved into α-Mg during T4 treatment process. After T6 treatment, the amount of precipitation phase of the Mg-3Nd-3Al alloy was less than that of the Mg-3Nd-0.5Zr alloy. Compared with the Mg-3Nd-0.5Zr alloy, the Mg-3Nd-3Al alloy had higher strength and elongation in as-cast condition, lower strength in T6 condition and a weaker age-hardening effect.



The authors gratefully acknowledge the financial support from the Heilongjiang Province Natural Science Foundation (No. E2018045).


  1. 1.
    X.B. Zhang, G.Y. Yuan, L. Mao, J.L. Niu, P.H. Fu, and W.J. Ding, J. Mech. Behav. Biomed. 7, 77 (2012).CrossRefGoogle Scholar
  2. 2.
    K. Suresh, K.P. Rao, Y.V.R.K. Prasad, N. Hort, and K.U. Kainer, JOM 66, 322 (2014).CrossRefGoogle Scholar
  3. 3.
    J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, J. Magn. Alloy 6, 277 (2018).CrossRefGoogle Scholar
  4. 4.
    S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Eastona, and T.B. Abbottc, Scripta Mater. 58, 477 (2008).CrossRefGoogle Scholar
  5. 5.
    Y.R. Gao, C.M. Liu, S.L. Fu, J. Jin, X. Shu, and Y.H. Gao, Surf. Coat. Tech. 204, 3629 (2010).CrossRefGoogle Scholar
  6. 6.
    J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng, and W.J. Ding, Electrochimi. Acta 52, 3160 (2007).CrossRefGoogle Scholar
  7. 7.
    H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018).CrossRefGoogle Scholar
  8. 8.
    H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, and Q. Liu, Acta Mater. 128, 313 (2017).CrossRefGoogle Scholar
  9. 9.
    Y. Ali, D. Qiu, B. Jiang, F.S. Pan, and M.X. Zhang, J. Alloys Compd. 619, 639 (2015).CrossRefGoogle Scholar
  10. 10.
    L. Wang, Y.C. Feng, L.P. Wang, Y.H. Chen, and E.J. Guo, J. Mater. Eng. Perform. 27, 2099 (2018).CrossRefGoogle Scholar
  11. 11.
    J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).CrossRefGoogle Scholar
  12. 12.
    W.J. Ding, P.H. Fu, L.M. Peng, H.Y. Jiang, and X.Q. Zeng, Mater. Sci. Forum 546, 433 (2007).CrossRefGoogle Scholar
  13. 13.
    P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai, Mater. Sci. Eng. A 486, 183 (2008).CrossRefGoogle Scholar
  14. 14.
    D. Liu, J.F. Song, B. Jiang, Y. Zeng, Q.H. Wang, Z.T. Jiang, B. Liu, G.S. Huang, and F.S. Pan, J. Alloys Compd. 737, 263 (2018).CrossRefGoogle Scholar
  15. 15.
    B.R. Powell, V. Rezhets, M.P. Balogh, and A. Waldo, JOM 54, 34 (2002).CrossRefGoogle Scholar
  16. 16.
    Y.F. Jiao, J.H. Zhang, L.L. He, M.L. Zhang, F.C. Jiang, W. Wang, L.M. Han, L.J. Xu, and R.Z. Wu, Adv. Eng. Mater. 18, 148 (2016).CrossRefGoogle Scholar
  17. 17.
    M.L. Su, J.H. Zhang, Y. Feng, Y.J. Bai, W. Wang, Z.W. Zhang, and F.C. Jiang, J. Alloys Compd. 691, 634 (2017).CrossRefGoogle Scholar
  18. 18.
    GB/T 228.1-2010, Metellic materials -Tensile testing- Part 1:Method of test at room temperature. SCA.Google Scholar
  19. 19.
    P.H. Fu, L.M. Peng, H.Y. Jiang, C.Q. Zhai, X. Gao, and J.F. Nie, Mater. Sci. Forum. 546, 97 (2007).CrossRefGoogle Scholar
  20. 20.
    R. Wilson, C.J. Bettles, B.C. Muddle, and J.F. Nie, Mater. Sci. Forum 419, 267 (2003).CrossRefGoogle Scholar
  21. 21.
    Y.D. Huang, H. Dieringa, N. Hort, P. Maier, K.U. Kainer, and Y.L. Liu, J. Alloys Compd. 463, 238 (2008).CrossRefGoogle Scholar
  22. 22.
    X.W. Zheng, L.D. Wang, J.L. Wang, Y.M. Wu, Z.L. Ning, J.F. Sun, and L.M. Wang, Mater. Sci. Eng. A 515, 98 (2009).CrossRefGoogle Scholar
  23. 23.
    J.H. Zhang, J. Wang, X. Qiu, D.P. Zhang, Z. Tian, X.D. Niu, D.X. Tang, and J. Meng, J. Alloys Compd. 464, 556 (2008).CrossRefGoogle Scholar
  24. 24.
    H.H. Zou, X.Q. Zeng, C.Q. Zhai, and W.J. Ding, Mater. Sci. Eng. A 392, 229 (2005).CrossRefGoogle Scholar
  25. 25.
    D. Qiu and M.X. Zhang, J. Alloys Compd. 586, 39 (2014).CrossRefGoogle Scholar
  26. 26.
    M. Sun, M.A. Easton, D.H. StJohn, G.H. Wu, T.B. Abbott, and W.J. Ding, Adv. Eng. Mater. 15, 373 (2013).CrossRefGoogle Scholar
  27. 27.
    G. Mann, J.R. Griffiths, and C.H. Cáceres, J. Alloys Compd. 378, 188 (2004).CrossRefGoogle Scholar
  28. 28.
    C.L. Wang, J.C. Dai, W.C. Liu, L. Zhang, and G.H. Wu, J. Alloys Compd. 620, 172 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Lei Wang
    • 1
  • Yicheng Feng
    • 1
    Email author
  • Erjun Guo
    • 1
  • Liping Wang
    • 1
  • Yuanke Fu
    • 1
  • Sicong Zhao
    • 1
  • Guojian Cao
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations