, Volume 71, Issue 7, pp 2303–2312 | Cite as

Evolution and Distribution of Geometrically Necessary Dislocations for TA15 Titanium Alloy Sheets During the Hot Tensile Process

  • Jie Zhao
  • Kehuan Wang
  • Liangxing Lv
  • Gang LiuEmail author
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys


A thorough understanding of the behavior of geometrically necessary dislocations (GNDs) for titanium alloys during the thermo-mechanical process is very important for effectively guiding the forming process and controlling the property of finial products. The current work seeks to provide valuable insights into the evolution and distribution of GNDs for TA15 titanium alloy sheet during the hot tensile process through the experimental study and numerical simulation. Based on EBSD analyses, the overall GND densities increased with the imposed macroscopic strain and saturated after a true strain of 0.4. A modified model for the prediction of average GND density with the imposed strain was proposed according to the mixed mechanism of texture, crystalline orientation, grain size, dynamic restoration and imposed strain. Moreover, GNDs were commonly distributed near grain boundaries, and some band-liked GND structures took triple junctions as starting points and extended linearly into grains nearly along a 45° angle toward the tensile direction. According to the result of a crystal plasticity finite element model, the mechanism of GND distribution was revealed.



This work was financially supported by High-level Personnel of Special Support Program (No. W02020239).


  1. 1.
    B. Kong, G. Liu, D. Wang, K. Wang, and S. Yuan, Mater. Des. 723, 90 (2016).Google Scholar
  2. 2.
    K. Wang, G. Liu, J. Zhao, J. Wang, and S. Yuan, Mater. Des. 269, 91 (2016).Google Scholar
  3. 3.
    M.F. Ashby, Philos. Mag. 399, 21 (1970).Google Scholar
  4. 4.
    P.D. Littlewood, T.B. Britton, and A.J. Wilkinson, Acta Mater. 6489, 59 (2011).Google Scholar
  5. 5.
    Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu, Science, 362 (2018).Google Scholar
  6. 6.
    J. Jiang, T.B. Britton, and A.J. Wilkinson, Int. J. Plast. 102, 69 (2015).Google Scholar
  7. 7.
    G. Liu, K. Wang, B. He, M. Huang, and S. Yuan, Mater. Des. 146, 86 (2015).Google Scholar
  8. 8.
    J.W. Kysar, Y. Saito, M.S. Oztop, D. Lee, and W.T. Huh, Int. J. Plast 1097, 26 (2010).Google Scholar
  9. 9.
    C.F.O. Dahlberg, Y. Saito, M.S. Öztop, and J.W. Kysar, Int. J. Plast. 81, 54 (2014).Google Scholar
  10. 10.
    T.J. Ruggles, D.T. Fullwood, and J.W. Kysar, Int. J. Plast 231, 76 (2016).Google Scholar
  11. 11.
    X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, and Y. Zhu, Acta Mater. 43, 116 (2016).Google Scholar
  12. 12.
    A. Kundu and D.P. Field, Mater. Sci. Eng. A 435, 667 (2016).Google Scholar
  13. 13.
    E.A. Bonifaz and N.L. Richards, Int. J. Plast 289, 24 (2008).Google Scholar
  14. 14.
    C. Zheng, L. Li, Y. Wang, W. Yang, and Z. Sun, Mater. Sci. Eng. A 181, 631 (2015).Google Scholar
  15. 15.
    H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson, J. Mech. Phys. Solids 1239, 47 (1999).Google Scholar
  16. 16.
    F.P.E. Dunne, D. Rugg, and A. Walker, Int. J. Plast 1061, 23 (2007).Google Scholar
  17. 17.
    T.B. Britton, H. Liang, F.P.E. Dunne, and A.J. Wilkinson, Proc. R. Soc. A Math. Phys. Eng. Sci. 695, 466 (2009).Google Scholar
  18. 18.
    J. Zhao, L. Lv, G. Liu, and K. Wang, Mater. Sci. Eng. A 30, 707 (2017).Google Scholar
  19. 19.
    B. He, W. Xu, and M. Huang, J. Mater. Sci. Technol. 1494, 33 (2017).Google Scholar
  20. 20.
    D.A. Hughes, N. Hansen, and D.J. Bammann, Scr. Mater. 147, 48 (2003).Google Scholar
  21. 21.
    L.P. Kubin and A. Mortensen, Scr. Mater. 119, 48 (2003).Google Scholar
  22. 22.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A 2738, 527 (2010).Google Scholar
  23. 23.
    B.L. Adams and J. Kacher, Comput. Mat. Contin. 185, 14 (2009).Google Scholar
  24. 24.
    C. Zhu, T. Harrington, V. Livescu, G.T. Gray, and K.S. Vecchio, Acta Mater. 383, 118 (2016).Google Scholar
  25. 25.
    J. Zhao, L. Lv, and G. Liu, Proc. Eng. 2179, 207 (2017).Google Scholar
  26. 26.
    E.P. Busso, F.T. Meissonnier, and N.P. O’Dowd, J. Mech. Phys. Solids 2333, 48 (2000).Google Scholar
  27. 27.
    K.S. Cheong and E.P. Busso, Acta Mater. 5665, 52 (2004).Google Scholar
  28. 28.
    C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe, Acta Mater. 333, 71 (2014).Google Scholar
  29. 29.
    H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp, Acta Mater. 7555, 61 (2013).Google Scholar
  30. 30.
    D. He, J.-C. Zhu, Z.-H. Lai, Y. Liu, X.-W. Yang, and Z.-S. Nong, Trans. Nonferr. Metals Soc. China 7, 23 (2013).Google Scholar
  31. 31.
    H. Li, C. Wu, and H. Yang, Int. J. Plast 271, 51 (2013).Google Scholar
  32. 32.
    E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, and K. Inal, Int. J. Plast 85, 66 (2015).Google Scholar
  33. 33.
    H. Li, D. Huang, M. Zhan, Y. Li, X. Wang, and S. Chen, Comput. Mater. Sci. 159, 140 (2017).Google Scholar
  34. 34.
    S. Birosca, F. Di Gioacchino, S. Stekovic, and M. Hardy, Acta Mater. 110, 74 (2014).Google Scholar
  35. 35.
    L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, Acta Mater. 1782, 58 (2010).Google Scholar
  36. 36.
    L.S. Toth, C.F. Gu, B. Beausir, J.J. Fundenberger, and M. Hoffman, Acta Mater. 35, 117 (2016).Google Scholar
  37. 37.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 1152, 58 (2010).Google Scholar
  38. 38.
    D. Zhang and S. Li, J. Mater. Sci. Technol. 175, 27 (2011).Google Scholar
  39. 39.
    P. Lin, A. Feng, S. Yuan, G. Li, and J. Shen, Mater. Sci. Eng. A 16, 563 (2013).Google Scholar
  40. 40.
    J.F. Zhang, X.X. Zhang, Q.Z. Wang, B.L. Xiao, and Z.Y. Ma, J. Mater. Sci. Technol. 627, 34 (2018).Google Scholar
  41. 41.
    H. Masuda, H. Tobe, E. Sato, Y. Sugino, and S. Ukai, Acta Mater. 205, 120 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jie Zhao
    • 1
    • 2
  • Kehuan Wang
    • 1
    • 2
  • Liangxing Lv
    • 3
  • Gang Liu
    • 1
    • 2
    Email author
  1. 1.National Key Laboratory for Precision Hot Processing of MetalsHarbin Institute of TechnologyHarbinChina
  2. 2.Institute of High Pressure Fluid FormingHarbin Institute of TechnologyHarbinChina
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations