, Volume 71, Issue 7, pp 2396–2404 | Cite as

Facile and Scalable Synthesis of Ultrafine MnCo2O4 Nanoparticles Via Mechanical Alloying as Supercapacitive Materials

  • Reza Ghaffari Adli
  • Abbas KianvashEmail author
  • Mir Ghasem Hosseini
  • Abdollah Hajalilou
  • Ebrahim Abouzari-Lotf
Technical Article


The possibility of synthesizing MnCo2O4 nanoparticles from MnCl2·4H2O and CoCl2·6H2O via mechanical alloying was investigated and sampled after 1, 2, 3, and 4 h of milling. X-ray diffraction (XRD) analysis showed that the initial materials were changed to MnCo2O4 after 1 h of milling and calcination. The broadening of the XRD lines showed that MnCo2O4 crystallites were on the order of nanometers. Fourier-transform infrared spectroscopy spectra of the MnCo2O4 samples indicated the cation distribution of Co-O (~ 567 cm−1) and Mn-O (~ 665 cm−1) in octahedral and tetrahedral sites, respectively. The morphology of the samples is spherical, according to field emission scanning electron microscopy results. Electrochemical measurements, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, were performed to evaluate specific capacitance, cyclic stability, and charge transfer resistance, respectively. The highest capacitance of about 546 F/g and efficiency of 103% were obtained for the 3-h-milled MnCo2O4 sample.



This work was financed by the Iranian National Committee of Nanotechnology in the Ministry of Science, Research and Technology and the office of the Vice Chancellor in Charge of Research of the University of Tabriz.


  1. 1.
    M.G. Hosseini, H. Rasouli, E. Shahryari, and L. Naji, J. Appl. Polym. Sci. 134, 24 (2017).Google Scholar
  2. 2.
    A. Pendashteh, S.E. Moosavifard, M.S. Rahmanifar, Y. Wang, M.F. El-Kady, R.B. Kaner, and M.F. Mousavi, Chem. Mater. 27, 3919 (2015).CrossRefGoogle Scholar
  3. 3.
    M.G. Hosseini and E. Shahryari, J. Mater. Sci. Technol. 32, 763 (2016).CrossRefGoogle Scholar
  4. 4.
    R.G. Adli, A. Kianvash, M.G. Hosseini, A. Hajalilou, and E. Abouzari-Lotf, Ceram. Int. (2018). Scholar
  5. 5.
    M.G. Hosseini and E. Shahryari, J. Colloid Int. Sci. 496, 371 (2017).CrossRefGoogle Scholar
  6. 6.
    G. Xu, Z. Zhang, X. Qi, X. Ren, S. Liu, Q. Chen, Z. Huang, and J. Zhong, Ceram. Int. 44, 120 (2018).CrossRefGoogle Scholar
  7. 7.
    S. Arepalli, H. Fireman, C. Huffman, P. Moloney, P. Nikolaev, L. Yowell, K. Kim, P.A. Kohl, C.D. Higgins, S.P. Turano, and W.J. Ready, JOM 57, 26 (2005).CrossRefGoogle Scholar
  8. 8.
    T. Purkait, G. Singh, D. Kumar, M. Singh, and R.S. Dey, Sci. Rep. 8, 640 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Nayak and J. Agrawal, JOM 64, 393 (2012).CrossRefGoogle Scholar
  10. 10.
    F. Liu, X. Chu, H. Zhang, B. Zhang, H. Su, L. Jin, Z. Wang, H. Huang, and W. Yang, Electrochim. Acta 269, 102 (2018).CrossRefGoogle Scholar
  11. 11.
    C.V.V. Muralee Gopi, S. Ravi, S.S. Rao, A. Eswar Reddy, and H.-J. Kim, Sci. Rep. 7, 46519 (2017).CrossRefGoogle Scholar
  12. 12.
    K.S. Yang and B.-H. Kim, Electrochim. Acta 186, 337 (2015).CrossRefGoogle Scholar
  13. 13.
    X.L. Guo, M. Kuang, F. Dong, and Y.X. Zhang, Ceram. Int. 42, 7787 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, Q. Min Yang, and I. Zhitomirsky, Mater. Manuf. Process. 26, 846 (2011).CrossRefGoogle Scholar
  15. 15.
    H. Xia, M.O. Lai, and L. Lu, JOM 63, 54 (2011).CrossRefGoogle Scholar
  16. 16.
    I. Zhitomirsky, M. Cheong, and J. Wei, JOM 59, 66 (2007).CrossRefGoogle Scholar
  17. 17.
    H.U. Shah, F. Wang, M.S. Javed, N. Shaheen, M. Saleem, and Y. Li, Ceram. Int. 44, 3580 (2018).CrossRefGoogle Scholar
  18. 18.
    A. Liu, H. Che, Y. Mao, Y. Wang, J. Mu, C. Wu, Y. Bai, X. Zhang, and G. Wang, Ceram. Int. 42, 11435 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Saghafi, F. Mahboubi, S. Mohajerzadeh, and R. Holze, Mater. Manuf. Process. 30, 70 (2015).CrossRefGoogle Scholar
  20. 20.
    E. Rezaie, A. Rezanezhad, L. Saleh, and A. Hajalilou, Ceram. Int. 44, 20285 (2018).CrossRefGoogle Scholar
  21. 21.
    Z. Mo, Y. Zhao, R. Guo, P. Liu, and T. Xie, Mater. Manuf. Process. 27, 494 (2012).CrossRefGoogle Scholar
  22. 22.
    W. Qi, X. Li, Y. Wu, H. Zeng, C. Kuang, S. Zhou, S. Huang, and Z. Yang, Surf. Coat. Technol. 320, 624 (2017).CrossRefGoogle Scholar
  23. 23.
    P.B. Karandikar, D.B. Talange, U. Mhaskar, and R. Bansal, Mater. Manuf. Process. 27, 1164 (2012).CrossRefGoogle Scholar
  24. 24.
    L. Kuang, F. Ji, X. Pan, D. Wang, X. Chen, D. Jiang, Y. Zhang, and B. Ding, Chem. Eng. J. 315, 491 (2017).CrossRefGoogle Scholar
  25. 25.
    K.J. Kim and J.W. Heo, J. Korean Phys. Soc. 60, 1376 (2012).CrossRefGoogle Scholar
  26. 26.
    L. Li, Y.Q. Zhang, X.Y. Liu, S.J. Shi, X.Y. Zhao, H. Zhang, X. Ge, G.F. Cai, C.D. Gu, X.L. Wang, and J.P. Tu, Electrochim. Acta 116, 467 (2014).CrossRefGoogle Scholar
  27. 27.
    Y. Yuan, H. Bi, G. He, J. Zhu, and H. Chen, Chem. Lett. 43, 83 (2014).CrossRefGoogle Scholar
  28. 28.
    A.K. Mondal, D. Su, S. Chen, A. Ung, H.S. Kim, and G. Wang, Chem. - A Eur. J. 21, 1526 (2015).CrossRefGoogle Scholar
  29. 29.
    K. Rana, P. Thakur, M. Tomar, V. Gupta, and A. Thakur, Ceram. Int. 44, 6370 (2018).CrossRefGoogle Scholar
  30. 30.
    G. Huang, S. Xu, Z. Xu, H. Sun, and L. Li, ACS Appl. Mater. Interfaces 6, 21325 (2014).CrossRefGoogle Scholar
  31. 31.
    H. Yuan and M. Xu, Ceram. Int. 44, 15531 (2018).MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Hajalilou, A. Kianvash, H. Lavvafi, and K. Shameli, J. Mater. Sci.: Mater. Electron. 29, 1690 (2018). Scholar
  33. 33.
    A. Hajalilou and S.A. Mazlan, Appl. Phys. A 122, 680 (2016).CrossRefGoogle Scholar
  34. 34.
    R. Parker, C.J. Rigden, and C.J. Tinsley, Trans. Faraday Soc. 65, 219 (1969).CrossRefGoogle Scholar
  35. 35.
    R.J. Hill, J.R. Craig, and G.V. Gibbs, Phys. Chem. Miner. 4, 317 (1979).CrossRefGoogle Scholar
  36. 36.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R. Justin Joseyphus, B. Jeyadevan, K. Tohji, and K. Chattopadhyay, J. Magn. Magn. Mater. 238, 281 (2002).CrossRefGoogle Scholar
  37. 37.
    A. Hajalilou, S.A. Mazlan, and K.A. Shameli, J. Phys. Chem. Solids 96–97, 49 (2016).CrossRefGoogle Scholar
  38. 38.
    L. Duan, F. Gao, L. Wang, S. Jin, and H. Wu, J. Adv. Ceram. 2, 266 (2013).CrossRefGoogle Scholar
  39. 39.
    A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, and N. Sarami, J. Phys. D Appl. Phys. 48, 145001 (2015).CrossRefGoogle Scholar
  40. 40.
    M. Velmurugan and S. Chen, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  41. 41.
    M.G. Hosseini and E. Shahryari, J. Solid State Electrochem. 21, 2833 (2017).CrossRefGoogle Scholar
  42. 42.
    H. Che, A. Liu, J. Mu, C. Wu, and X. Zhang, Ceram. Int. 42, 2416 (2016).CrossRefGoogle Scholar
  43. 43.
    S. Sahoo, K.K. Naik, and C.S. Rout, Nanotechnology 26, 455401 (2015).CrossRefGoogle Scholar
  44. 44.
    M. Velmurugan and S. Chen, Sci. Rep. 7, 653 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Reza Ghaffari Adli
    • 1
  • Abbas Kianvash
    • 1
    Email author
  • Mir Ghasem Hosseini
    • 2
    • 3
  • Abdollah Hajalilou
    • 1
  • Ebrahim Abouzari-Lotf
    • 4
  1. 1.Department of Materials Engineering, Institute of Mechanical EngineeringUniversity of TabrizTabrizIran
  2. 2.Electrochemistry Research Laboratory, Department of Physical ChemistryUniversity of TabrizTabrizIran
  3. 3.Department of Materials Science and Nanotechnology, Engineering FacultyNear East UniversityNicosia, Mersin 10Turkey
  4. 4.Advanced Materials Research Group, Center of Hydrogen EnergyUniversity Technology MalaysiaKuala LumpurMalaysia

Personalised recommendations