, Volume 71, Issue 7, pp 2445–2451 | Cite as

Influence of Metal Additives on Microstructure and Properties of Amorphous Metal–SiOC Composites

  • Kaisheng Ming
  • Qing Su
  • Chao Gu
  • Dongyue Xie
  • Yongqiang Wang
  • Michael Nastasi
  • Jian WangEmail author
Technical Article


Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits high strength and plasticity associated with strain hardening, as well as a good thermal stability and irradiation tolerance. In contrast, the Cu-SiOC composite displays a very low plasticity and poor thermal stability. These findings suggest that the metal constituents play a crucial role in developing microstructure and determining properties of metal–amorphous composites.



We acknowledge the partial financial support from the Department of Energy (DOE) Office of Nuclear Energy and Nuclear Energy Enabling Technologies through Award No. DE-NE0008415, and from the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln. The research was performed in part in National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS: 1542182 and the Nebraska Research Initiative. Ion irradiation was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

Supplementary material

Supplementary material 1 (MP4 12166 kb)

Supplementary material 2 (MP4 5659 kb)

Supplementary material 3 (MP4 3849 kb)

Supplementary material 4 (MP4 5777 kb)

Supplementary material 5 (MP4 10054 kb)


  1. 1.
    Y. Katoh, Q. Huang, Y.-H. Han, and S. Risbud, Scr. Mater. 143, 126 (2018).CrossRefGoogle Scholar
  2. 2.
    T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 14 (2010).CrossRefGoogle Scholar
  3. 3.
    S.J. Zinkle and G. Was, Acta Mater. 61, 735 (2013).CrossRefGoogle Scholar
  4. 4.
    P. Yvon and F. Carré, J. Nucl. Mater. 385, 217 (2009).CrossRefGoogle Scholar
  5. 5.
    F. Garner, Compr. Nucl. Mater. 4, 33 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Gigax, T. Chen, H. Kim, J. Wang, L. Price, E. Aydogan, S.A. Maloy, D. Schreiber, M. Toloczko, and F. Garner, J. Nucl. Mater. 482, 257 (2016).CrossRefGoogle Scholar
  7. 7.
    L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, and Q. Huang, J. Nucl. Mater. 479, 515 (2016).CrossRefGoogle Scholar
  8. 8.
    E. Little and D. Stow, J. Nucl. Mater. 87, 25 (1979).CrossRefGoogle Scholar
  9. 9.
    M.-L. Lescoat, J. Ribis, Y. Chen, E. Marquis, E. Bordas, P. Trocellier, Y. Serruys, A. Gentils, O. Kaïtasov, and Y. De Carlan, Acta Mater. 78, 328 (2014).CrossRefGoogle Scholar
  10. 10.
    I. Monnet, P. Dubuisson, Y. Serruys, M.-O. Ruault, O. Kaı, and B. Jouffrey, J. Nucl. Mater. 335, 311 (2004).CrossRefGoogle Scholar
  11. 11.
    A. Certain, S. Kuchibhatla, V. Shutthanandan, D. Hoelzer, and T. Allen, J. Nucl. Mater. 434, 311 (2013).CrossRefGoogle Scholar
  12. 12.
    G.R. Odette and D.T. Hoelzer, JOM 62, 84 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).CrossRefGoogle Scholar
  14. 14.
    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).CrossRefGoogle Scholar
  15. 15.
    M. Nastasi, Q. Su, L. Price, J.A. Colón Santana, T. Chen, R. Balerio, and L. Shao, J. Nucl. Mater. 461, 200 (2015).CrossRefGoogle Scholar
  16. 16.
    Q. Su, B. Cui, M.A. Kirk, and M. Nastasi, Philos. Mag. Lett. 96, 60 (2016).CrossRefGoogle Scholar
  17. 17.
    P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805 (2010).Google Scholar
  18. 18.
    Q. Su, S. King, L. Li, T. Wang, J. Gigax, L. Shao, W.A. Lanford, and M. Nastasi, Scr. Mater. 146, 316 (2018).CrossRefGoogle Scholar
  19. 19.
    K. Ming, C. Gu, Q. Su, Y. Wang, A. Zare, D.A. Lucca, M. Nastasi, and J. Wang, J. Nucl. Mater. 516, 289 (2019).CrossRefGoogle Scholar
  20. 20.
    J.A. Colón Santana, E.E. Mora, L. Price, R. Balerio, L. Shao, and M. Nastasi, Nucl. Instrum. Methods B 350, 6 (2015).CrossRefGoogle Scholar
  21. 21.
    Q. Su, S. Inoue, M. Ishimaru, J. Gigax, T. Wang, H. Ding, M.J. Demkowicz, L. Shao, and M. Nastasi, Sci. Rep. 7, 3900 (2017).CrossRefGoogle Scholar
  22. 22.
    C.G. Pantano, A.K. Singh, H. Zhang, and J. Sol-Gel, Sci. Technol. 14, 7 (1999).Google Scholar
  23. 23.
    G.D. Sorarù, D. Suttor, and J. Sol-Gel, Sci. Technol. 14, 69 (1999).Google Scholar
  24. 24.
    R. Harshe, C. Balan, and R. Riedel, J. Eur. Ceram. Soc. 24, 3471 (2004).CrossRefGoogle Scholar
  25. 25.
    G.D. Sorarù, E. Dallapiccola, and G. D’Andrea, J. Am. Ceram. Soc. 79, 2074 (1996).CrossRefGoogle Scholar
  26. 26.
    T. Rouxel, G.-D. Soraru, and J. Vicens, J. Am. Ceram. Soc. 84, 1052 (2001).CrossRefGoogle Scholar
  27. 27.
    T. Rouxel, G. Massouras, G.-D. Sorarù, and J. Sol-Gel, Sci. Technol. 14, 87 (1999).Google Scholar
  28. 28.
    G.D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C. Pantano, J. Am. Ceram. Soc. 85, 1529 (2002).CrossRefGoogle Scholar
  29. 29.
    A. Argon, Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
  30. 30.
    A. Greer, Y. Cheng, and E. Ma, Mater. Sci. Eng. R 74, 71 (2013).CrossRefGoogle Scholar
  31. 31.
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
  32. 32.
    M.M. Trexler and N.N. Thadhani, Prog. Mater Sci. 55, 759 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Chen, Annu. Rev. Mater. Res. 38, 445 (2008).CrossRefGoogle Scholar
  34. 34.
    W.H. Wang, Prog. Mater Sci. 57, 487 (2012).CrossRefGoogle Scholar
  35. 35.
    Y. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).CrossRefGoogle Scholar
  36. 36.
    J. Pan, Q. Chen, L. Liu, and Y. Li, Acta Mater. 59, 5146 (2011).CrossRefGoogle Scholar
  37. 37.
    L. Li, E.R. Homer, and C.A. Schuh, Acta Mater. 61, 3347 (2013).CrossRefGoogle Scholar
  38. 38.
    J. Qiao, H. Jia, and P.K. Liaw, Mater. Sci. Eng. R 100, 1 (2016).CrossRefGoogle Scholar
  39. 39.
    J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
  40. 40.
    A. Misra, M. Demkowicz, J. Wang, and R. Hoagland, JOM 60, 39 (2008).CrossRefGoogle Scholar
  41. 41.
    A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
  42. 42.
    Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).CrossRefGoogle Scholar
  43. 43.
    M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle Scholar
  44. 44.
    L. Zhu, S. Shi, K. Lu, and J. Lu, Acta Mater. 60, 5762 (2012).CrossRefGoogle Scholar
  45. 45.
    T. Fang, W. Li, N. Tao, and K. Lu, Science 331, 1587 (2011).CrossRefGoogle Scholar
  46. 46.
    K. Lu, Science 345, 1455 (2014).CrossRefGoogle Scholar
  47. 47.
    X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. USA 111, 7197 (2014).CrossRefGoogle Scholar
  48. 48.
    M. Nastasi, N. Michael, J. Mayer, J.K. Hirvonen, and M. James, Ion-Solid Interactions: Fundamentals and Applications (Cambridge: Cambridge University Press, 1996).CrossRefGoogle Scholar
  49. 49.
    T. Rouxel, J. Am. Ceram. Soc. 90, 3019 (2007).CrossRefGoogle Scholar
  50. 50.
    Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press, 2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and EngineeringBeihang UniversityBeijingPeople’s Republic of China
  3. 3.Department of PhysicsSouth University of Science and TechnologyShenzhenPeople’s Republic of China
  4. 4.MST DivisionLos Alamos National LaboratoryLos AlamosUSA
  5. 5.Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations