, Volume 71, Issue 7, pp 2219–2226 | Cite as

Alloy Design and Processing Design of Magnesium Alloys Using 2nd Phases

  • R. F. DeckerEmail author
  • T. D. Berman
  • V. M. Miller
  • J. W. Jones
  • T. M. Pollock
  • S. E. LeBeau
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance


Two phases dominate the performance of commercial Mg alloys: (1) β Mg17Al12 and (2) porosity. Alloy design and process design to optimize the morphology of the first and to minimize the second are discussed. Second phase β can be designed to improve tensile strength, fatigue strength, toughness, texture, formability and corrosion resistance of Mg alloys. Processing is applied to refine the grain size, to array this phase in micron sizes at grain boundaries, and to further precipitate this phase in nanometer arrays within the grains. Therein, the 2nd phase β plays the following roles: (1) retarding grain growth, (2) randomizing texture, (3) Hall–Petch hardening, (4) Orowan hardening, and (5) moderating corrosion. Porosity is a detrimental 2nd phase common to cast Mg alloys in the form of gas or voids; its control being essential to engineering applications. Porosity can be diminished by sub-liquidus molding with high-velocity/high-pressure injection and then eliminated by subsequent hot deformation.



The authors are pleased to honor the support of NSF Award No. DMR 1121053 and NSF STTR Award No. 0847198 (Program Manager, Dr Prakash Balan) and graduate school support from The University of Michigan and University of California Santa Barbara.


  1. 1.
    R. Decker, D. Dawson, R. Carnahan, and S. LeBeau, Thixomolding ® -High Integrity Casting of Light Weight Components, ed. D. Twarog, D. Apelian, and A. Luo (Mount Laurel: NADCA Pub., 2016), pp. 307–361.Google Scholar
  2. 2.
    R. Decker, S. LeBeau, T. Berman, V. Miller, V. Jones, J. Pollock, T. Moskovich, and B. Bronfin, in Magnesium Technology (TMS, 2017), p. 235.Google Scholar
  3. 3.
    R. Decker, J. Huang, S. Kulkarni, S. LeBeau, and R. Vining, US Patent No. 9,017,602 B, April 28, 2015.Google Scholar
  4. 4.
    T. Berman, T. Pollock, and J. Jones, Metal. Mater. Trans. A 47A, 3125 (2016).CrossRefGoogle Scholar
  5. 5.
    V. Miller and T. Pollock, Metal. Mater. Trans. A 47A, 1854 (2016).CrossRefGoogle Scholar
  6. 6.
    T. Berman, W. Donlon, T. Miller, R. Decker, J. Huang, T. Pollock, and J. Jones, in Proceedings of the 9th International Conference Mg Alloys and their Applications, ed. by W. Poole and K. Kainer (ICMAA, 2012), p. 571.Google Scholar
  7. 7.
    T. Berman, W. Donlon, T. Miller, Decker, J. Huang, T. Pollock, and J. Jones, in Magnesium Technology (TMS, 2012), p. 339.Google Scholar
  8. 8.
    R. Buzolin, H. Dieringa, C. Blawert, H. Frank, C. Mendis, A. Lohmuller, K. Kainer, and N. Hort, in Magnesium Technology (TMS, 2017), p. 381.Google Scholar
  9. 9.
    Z. Chen, J. Huang, R. Decker, S. LeBeau, L. Walker, O. Cavin, T. Watkins, and C. Boehlert, Metal. Mater. Trans. A 42A, 1386 (2011).CrossRefGoogle Scholar
  10. 10.
    V. Miller, T. Berman, I. Beyerlein, and T. Pollock, in Magnesium Technology (TMS, 2016), p. 257.Google Scholar
  11. 11.
    P. Cain, Interlaken Technology Corporation, Private Communication.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • R. F. Decker
    • 1
    Email author
  • T. D. Berman
    • 2
  • V. M. Miller
    • 3
  • J. W. Jones
    • 2
  • T. M. Pollock
    • 4
  • S. E. LeBeau
    • 1
  1. 1.Thixomat/NanoMAGLivoniaUSA
  2. 2.The University of MichiganAnn ArborUSA
  3. 3.North Carolina State UniversityRaleighUSA
  4. 4.University of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations