Advertisement

JOM

, Volume 71, Issue 7, pp 2262–2271 | Cite as

Interface Analysis of Spark Plasma Sintered Carbon Nanotube Reinforced Ti6Al4V

  • A. O. AdegbenjoEmail author
  • P. A. Olubambi
  • J. E. Westraadt
  • M. Lesufi
  • M. R. Mphahlele
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • 75 Downloads

Abstract

This study investigated the dispersion and interface reactions in a multi-walled carbon nanotube (MWCNTs) reinforced Ti6Al4V composite consolidated by the spark plasma sintering technique. The 1 wt.% MWCNTs were dispersed in Ti6Al4V by high-energy ball milling, and the milled composite powder was consolidated at 1000°C. The other parameters adopted during the sintering process were applied pressure (50 MPa), heating rate (100°C/min) and 5 min holding time, respectively. Thin lamellae from the synthesized bulk Ti6Al4V/1 wt.% MWCNT composite were prepared and characterized by transmission Kikuchi diffraction (TKD), scanning electron microscopy and high-resolution scanning transmission electron microscopy. Large agglomerations of MWCNTs in the order of 50–100 µm were distributed in the composite, and the TKD analysis on the sample retrieved from the MWCNT/Ti6Al4V interface had a polycrystalline layer of titanium carbide formed between the Ti6Al4V matrix particles and the MWCNT clusters.

Notes

Acknowledgement

The authors appreciate the Global Excellence and Stature (GES), University of Johannesburg, South Africa, for the financial support toward this work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A.O. Adegbenjo, P.A. Olubambi, J.H. Potgieter, M.B. Shongwe, and M. Ramakokovhu, Mater. Des. 128, 119 (2017).CrossRefGoogle Scholar
  2. 2.
    V.A.R. Henriques, P.P. de Campos, C.A.A. Cairo, and J.C. Bressiani, Mater. Res. 8, 443 (2005).CrossRefGoogle Scholar
  3. 3.
    C. Veiga, J.P. Davim, and A.J.R. Loureiro, Rev. Adv. Mater. Sci. 32, 133 (2012).Google Scholar
  4. 4.
    F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu, and S. Osamu, Carbon N. Y. 95, 396 (2015).CrossRefGoogle Scholar
  5. 5.
    K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 69, 1077 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Compos. Part A Appl. Sci. Manuf. 48, 57 (2013).CrossRefGoogle Scholar
  7. 7.
    K.S. Munir, Y. Li, J. Lin, and C. Wen, Materialia 3, 22 (2018).CrossRefGoogle Scholar
  8. 8.
    A. Bhat, V.K. Balla, S. Bysakh, D. Basu, S. Bose, and A. Bandyopadhyay, Mater. Sci. Eng. A 528, 6727 (2011).CrossRefGoogle Scholar
  9. 9.
    X. Feng, J. Sui, and W. Cai, J. Compos. Mater. 45, 1553 (2011).CrossRefGoogle Scholar
  10. 10.
    K.S. Munir, Y. Li, D. Liang, M. Qian, W. Xu, and C. Wen, Mater. Des. 88, 138 (2015).CrossRefGoogle Scholar
  11. 11.
    K.S. Munir and C. Wen, Crit. Rev. Solid State Mater. Sci. 41, 347 (2016).CrossRefGoogle Scholar
  12. 12.
    B. Cheng, R. Bao, J. Yi, C. Li, J. Tao, Y. Liu, S. Tan, and X. You, J. Alloys Compd. 722, 852 (2017).CrossRefGoogle Scholar
  13. 13.
    B.K. Choi, G.H. Yoon, and S. Lee, Compos. Part B Eng. 91, 119 (2016).CrossRefGoogle Scholar
  14. 14.
    N. Silvestre, B. Faria, and J.N.C. Lopes, Compos. Sci. Technol. 90, 16 (2014).CrossRefGoogle Scholar
  15. 15.
    K.S. Munir, Y. Li, M. Qian, and C. Wen, Carbon N. Y. 99, 384 (2016).CrossRefGoogle Scholar
  16. 16.
    K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott, D.M. Zhu, and C. Wen, Adv. Eng. Mater. 17, 1660 (2015).CrossRefGoogle Scholar
  17. 17.
    K.S. Munir, D.T. Oldfield, and C. Wen, Adv. Eng. Mater. 18, 294 (2016).CrossRefGoogle Scholar
  18. 18.
    A.O. Adegbenjo, P.A. Olubambi, J.H. Potgieter, E. Nsiah-Baafi, and M.B. Shongwe, J. Mater. Eng. Perform. 26, 6047 (2017).CrossRefGoogle Scholar
  19. 19.
    K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, and C. Wen, Mater. Sci. Eng. A 688, 505 (2017).CrossRefGoogle Scholar
  20. 20.
    L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, and E. Gordo, Powder Metall. 54, 543 (2011).CrossRefGoogle Scholar
  21. 21.
    H.Ö. Gülsoy, N. Gülsoy, and R. Calışıcı, Biomed. Mater. Eng. 24, 1861 (2014).Google Scholar
  22. 22.
    F.H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Chem. Phys. Lett. 370, 820 (2003).CrossRefGoogle Scholar
  23. 23.
    M.T.Z. Hassan, A.M.K. Esawi, and S. Metwalli, J. Alloys Compd. 607, 215 (2014).CrossRefGoogle Scholar
  24. 24.
    P. Gill and N. Munroe, J. Mater. Eng. Perform. 21, 2467 (2012).CrossRefGoogle Scholar
  25. 25.
    A.O. Adegbenjo, B.A. Obadele, and P.A. Olubambi, J. Alloys Compd. 749, 818 (2018).CrossRefGoogle Scholar
  26. 26.
    Y. Oh, J. Choi, Y. Kim, K. Kim, and S. Baik, Scr. Mater. 56, 741 (2007).CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
  28. 28.
    P. Lespade, A. Marchand, M. Couzi, and F. Cruege, Carbon N. Y. 22, 375 (1984).CrossRefGoogle Scholar
  29. 29.
    E. Thostenson, Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
  30. 30.
    W. Cai, X. Feng, and J. Sui, Rare Met. 31, 48 (2012).CrossRefGoogle Scholar
  31. 31.
    A. Agarwal, S.R. Bakshi, and D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites (London: CRC Press, 2016).CrossRefGoogle Scholar
  32. 32.
    A. Azarniya, A. Azarniya, S. Sovizi, H.R.M. Hosseini, T. Varol, A. Kawasaki, and S. Ramakrishna, Prog. Mater Sci. 90, 276 (2017).CrossRefGoogle Scholar
  33. 33.
    K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 72, 1291 (2012).CrossRefGoogle Scholar
  34. 34.
    Z. Baig, O. Mamat, and M. Mustapha, Crit. Rev. Solid State Mater. Sci. 43, 1 (2018).CrossRefGoogle Scholar
  35. 35.
    P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, and A. Paipetis, J. Compos. Mater. 43, 977 (2009).CrossRefGoogle Scholar
  36. 36.
    D.C. Davis, J.W. Wilkerson, J. Zhu, and D.O.O. Ayewah, Compos. Struct. 92, 2653 (2010).CrossRefGoogle Scholar
  37. 37.
    K. Chu and C. Jia, Phys. Status Solidi 211, 184 (2014).CrossRefGoogle Scholar
  38. 38.
    C. Yi, S. Bagchi, C.M. Dmuchowski, F. Gou, X. Chen, C. Park, H.B. Chew, and C. Ke, Carbon N. Y. 132, 548 (2018).CrossRefGoogle Scholar
  39. 39.
    K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, J. Nanomater. 2008, 76 (2008).CrossRefGoogle Scholar
  40. 40.
    S. Li, B. Sun, H. Imai, and K. Kondoh, Carbon N. Y. 61, 216 (2013).CrossRefGoogle Scholar
  41. 41.
    K.S. Munir, P. Kingshott, and C. Wen, Crit. Rev. Solid State Mater. Sci. 40, 38 (2015).CrossRefGoogle Scholar
  42. 42.
    K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, and C. Wen, Mater. Sci. Eng. A 696, 10 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Centre for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Mechanical Engineering DepartmentThe Ibarapa Polytechnic (TIPE)EruwaNigeria
  3. 3.Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela UniversityPort ElizabethSouth Africa

Personalised recommendations