pp 1–10 | Cite as

Dissolution Kinetics of Mg17Al12 Eutectic Phase and Its Effect on Corrosion Behavior of As-Cast AZ80 Magnesium Alloy

  • Kondababu Kadali
  • Dhananjay Dubey
  • R. Sarvesha
  • Harikrishna Kancharla
  • Jayant Jain
  • Kallol Mondal
  • Sudhanshu S. SinghEmail author
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance


Mg17Al12 eutectic phase strongly affects the mechanical and corrosion properties of AZ80 magnesium alloy. In this study, the dissolution kinetics of Mg17Al12 phase was evaluated at 420°C. The dissolution was found to follow the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model with time exponent (n) of ~ 0.61, suggesting a decrease in the rate of dissolution of Mg17Al12 with time due to enrichment of aluminum in the matrix adjacent to precipitates. The effect of dissolution of Mg17Al12 phase on the corrosion behavior of the alloy was investigated by dynamic polarization measurements in NaCl solution. Analysis of the morphology of the corrosion surface by scanning electron microscopy and investigation of the corrosion products by x-ray diffraction analysis and Raman spectroscopy suggested an increase in the corrosion resistance of the alloy with a decrease in the Mg17Al12 phase fraction. This was attributed to the loss of effectiveness of microgalvanic cells formed between the precipitate and matrix.



The authors wish to thank Prof. Warren Poole of the University of British Columbia for providing the as-cast AZ80 Mg alloy. The authors acknowledge financial support received from IIT Kanpur to carry out this work. The authors also acknowledge the facilities at Advanced Center for Materials Science (ACMS) and Advanced Imaging Center (AIC) at IIT Kanpur.

Supplementary material

11837_2019_3470_MOESM1_ESM.pdf (332 kb)
Supplementary material 1 (PDF 332 kb)


  1. 1.
    B.L. Mordik and T. Ebert, Mater. Sci. Eng., A 302, 37–45 (2001).CrossRefGoogle Scholar
  2. 2.
    A.L. Alan, J. Magnes. Alloys 1, 2–22 (2013).CrossRefGoogle Scholar
  3. 3.
    H. Friedrich and S. Schumann, J. Mater. Process. Technol. 117, 276–281 (2001).CrossRefGoogle Scholar
  4. 4.
    B.A. Shaw, Corrosion Resistance of Magnesium Alloys. ASM Handbook 13A, 693–696 (2003).Google Scholar
  5. 5.
    G.L. Song, Corrosion Prevention of Magnesium Alloys, 1st ed. (USA: Woodhead Publishing, 2013), pp. 3–37.CrossRefGoogle Scholar
  6. 6.
    Z. Wang, Y. Yang, B. Li, Y. Zhang, and Z. Zhang, Mater. Sci. Eng., A 582, 36–40 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Esmaily, J.E. Svesson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thoms, and L.G. Johansson, Prog. Mater Sci. 89, 92–193 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Liao and M. Hotta, Corros. Sci. 100, 353–364 (2015).CrossRefGoogle Scholar
  9. 9.
    Y.C. Zhao, M.C. Zhao, R. Xu, L. Liu, J.X. Tao, C. Gao, C. Shuai, and A. Atrens, J. Alloys Compd. 770, 549–558 (2019).CrossRefGoogle Scholar
  10. 10.
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and S. Feliu Jr, Electrochim. Acta 53, 7890–7902 (2008).CrossRefGoogle Scholar
  11. 11.
    K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Int. Mater. Rev. 60, 169–194 (2015).CrossRefGoogle Scholar
  12. 12.
    R. Ambat, N.N. Aung, and W. Zhou, Corros. Sci. 42, 1433–1455 (2000).CrossRefGoogle Scholar
  13. 13.
    Md. Imran Khan, A.O. Mostafa, M. Aljarrah, E. Essadiqi, and M. Medraj, J. Mater. 2014, 1–18 (2014).CrossRefGoogle Scholar
  14. 14.
    A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. Stjohn, J. Light Metals 1, 61–72 (2001).CrossRefGoogle Scholar
  15. 15.
    I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, and M. Niewczas, Mater. Sci. Eng., A 496, 247–255 (2008).CrossRefGoogle Scholar
  16. 16.
    Y. Uematsu, K. Tokaji, and M. Matsumoto, Mater. Sci. Eng., A 517, 138–145 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Jain, G. Aditya, J. Jayant, S.S. Singh, and K. Hariharan, Mater. Sci. Eng., A 684, 652–659 (2017).CrossRefGoogle Scholar
  18. 18.
    G.M. Naik, G. Gote, S. Narendranath, and S.S. Satheesh Kumar, Mater. Res. Express 5, 086513 (2018).CrossRefGoogle Scholar
  19. 19.
    M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Adv. Eng. Mater. 10, 93–103 (2008).CrossRefGoogle Scholar
  20. 20.
    H.J. Liao, X.F. Zhou, H.Z. Li, M. Deng, X.P. Liang, and R.M. Liu, Trans. Nonferrous Met. Soc. China 25, 3921–3927 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Zheng, H. Nie, W. Liang, H. Wang, and Y. Wang, J. Magnes. Alloys 4, 115–122 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wanger, Corros. Sci. 50, 1766–1778 (2008).CrossRefGoogle Scholar
  23. 23.
    M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Corros. Sci. 50, 1939–1953 (2008).CrossRefGoogle Scholar
  24. 24.
    O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corrosion 45, 741–748 (1988).CrossRefGoogle Scholar
  25. 25.
    A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci. 50, 823–834 (2008).CrossRefGoogle Scholar
  26. 26.
    G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11–13 (1999).CrossRefGoogle Scholar
  27. 27.
    G.L. Song, A. Atrens, and M. Dargusch, Corros. Sci. 41, 249–273 (1999).CrossRefGoogle Scholar
  28. 28.
    G.L. Song, A.L. Bowles, and D.H. Stjohn, Mater. Sci. Eng., A 366, 74–86 (2004).CrossRefGoogle Scholar
  29. 29.
    D. Zhao, Z. Wang, M. Zuo, and H. Geng, Mater. Des. 56, 589–593 (2014).CrossRefGoogle Scholar
  30. 30.
    A. Zindal, J. Jain, R. Prasad, S.S. Sing, R. Sarvesha, P. Cizek, and M.R. Barnett, Mater. Charact. 136, 175–182 (2018).CrossRefGoogle Scholar
  31. 31.
    W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong, and W.H. Wang, J. Alloys Compd. 476, 118–124 (2009).CrossRefGoogle Scholar
  32. 32.
    Y. Tamura, Y. Kida, A. Suzuki, H. Soda, and A. McLean, Mater. Trans. 50, 579–587 (2009).CrossRefGoogle Scholar
  33. 33.
    R. Zeng, E. Han, and W. Ke, J. Mater. Sci. Technol. 23, 353–358 (2007).Google Scholar
  34. 34.
    ASTM G3-14, Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing, ASTM International, West Conshohocken (2014).Google Scholar
  35. 35.
    ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken (2015).Google Scholar
  36. 36.
    H.Z. Ye and X.Y. Liu, J. Alloys Compd. 419, 54–60 (2006).CrossRefGoogle Scholar
  37. 37.
    A.A. Nayeb-Hashemi and J.B. Clark, Phase Diagram of Binary Magnesium Alloys (Materials Park, OH, USA: ASM International, 1988).Google Scholar
  38. 38.
    E. Aghion, L. Jan, L. Meshi, and J. Goldman, J. Biomed. Mater. Res., Part B 103, 1541–1548 (2014).CrossRefGoogle Scholar
  39. 39.
    C. Cheng, Q. Lan, A. Wang, Q. Le, F. Yang, and X. Li, Metals 8, 766 (2018).CrossRefGoogle Scholar
  40. 40.
    S.K. Guan, S.J. Zhu, L.G. Wang, Q. Yang, and W.B. Cao, Trans. Nonferrous Met. Soc. China 17, 1143–1151 (2007).CrossRefGoogle Scholar
  41. 41.
    P. Cao, M. Qian, and D.H. Stjohn, Scr. Mater. 54, 1853–1858 (2006).CrossRefGoogle Scholar
  42. 42.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (UK: Chapman & Hall Book, 1992), p. 290.CrossRefGoogle Scholar
  43. 43.
    C. Kammerer, N. Kulkarni, R. Warmack, K. Perry, I. Belova, G. Murch, and Y. Sohn, Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples, Magnesium Technology, ed. M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham (Cham: Springer, 2014), p. 505.Google Scholar
  44. 44.
    N.K. Kaustub and A.L. Alan, J. Phase Equilib. Diffus. 34, 104–115 (2013).CrossRefGoogle Scholar
  45. 45.
    G.L. Song, A. Atrens, X. Wu, and B. Zhang, Corros. Sci. 40, 1769–1791 (1998).CrossRefGoogle Scholar
  46. 46.
    G.M. Abady, N.H. Hilal, M. El-Rabiee, and W.A. Badawy, Electrochim. Acta 55, 6651–6658 (2010).CrossRefGoogle Scholar
  47. 47.
    C.R. Weber, G. Knornschild, and L.F.P. Dick, J. Braz. Chem. Soc. 14, 584–593 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations